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ABSTRACT Information and communication technologies are permeating all aspects of industrial and
manufacturing systems, expediting the generation of large volumes of industrial data. This paper surveys the
recent literature on data management as it applies to networked industrial environments and identifies several
open research challenges for the future. As a first step, we extract important data properties (volume, variety,
traffic, and criticality) and identify the corresponding data enabling technologies of diverse fundamental
industrial use cases, based on practical applications. Second, we provide a detailed outline of recent industrial
architectural designs with respect to their data management philosophy (data presence, data coordination,
and data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent
literature from which we derive a taxonomy of the latest advances in industrial data enabling technologies
and data centric services, spanning all the way from the field level deep in the physical deployments, up to the
cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify
interesting open challenges for future research. The concepts presented in this paper thematically cover the
largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected
publications were drawn from two fields; the communications, networking and computation field, and the
industrial, manufacturing, and automation field. This paper can help the readers to deeply understand how
data management is currently applied in networked industrial environments, and select interesting open
research opportunities to pursue.

INDEX TERMS Data management, industrial networks, manufacturing, Industry 4.0.

I. INTRODUCTION
The manufacturing industry needs to lead innovations to
face the global competitive pressures in the advent of intel-
ligent manufacturing across the broad range of manufactur-
ing sectors [1]. The fourth industrial revolution, or Industry
4.0 (I4.0), which is being realized in the recent and next
years, is expected to deeply change the future manufactur-
ing and production processes, and to lead to smart facto-
ries and networked industrial environments that will benefit
from its main design principles: interoperability, virtualiza-
tion, decentralization, distributed control and communica-
tion, real-time capability, service orientation, quick and easy
maintenance, low cost, and modularity [2]. In modern indus-
trial applications however, traditional centralized point-to-
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point control and communication cannot be suitable to meet
the increasingly challenging new requirements [3]. For this
reason, most members of the I4.0 community think in terms
of decades rather than years as to when the full I4.0 visionwill
become state-of-the-art [4]. The I4.0 is highly heterogeneous;
in fact it is the aggregation point of more than 30 different
fields of technology [5].

The concept of cyber-physical convergence (and the
related concept of digital twin) is a cornerstone of the
most disruptive I4.0 innovations. In turn, data manage-
ment is one of the key enablers for the realization of this
concept. Technologically advanced devices, such as accu-
rate robotic elements, sensing systems, smartphones, smart
glasses, and GPS-enabled cameras, are already having a
transformative effect on the development of I4.0 enabled
industrial ecosystems by interlinking the cyber and phys-
ical worlds and leading to an industrial cyber-physical
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FIGURE 1. Pivotal technological enablers for the I4.0.

convergence [6]. By exploiting these devices and various
data enabling technologies, data coming from physical reality
(collected through sensors and other data generating sources)
are seamlessly transferred into the cyber world where they
are elaborated to adapt cyber applications and services to the
physical context, and then modify/adapt the physical world
itself (through actuators and robotic elements). The digital
twin, which is the collection of tools and methodologies to
create the virtual models for physical objects in the digital
way to simulate their behaviors, paves the way towards the
cyber-physical convergence [7]. The virtual models could
understand the state of the physical entities through sensing
data, so as to predict, estimate, and analyze the dynamic
changes. While the physical objects would respond to the
changes according to the optimized scheme from simulation.
Through this cyber-physical closed loop, the digital twin
could achieve the optimization of the whole manufacturing
process, and, in this view, data management will be a critical
process. This is because (as explained in section I-A) data
will serve as a fundamental resource to promote I4.0 from
machine automation to information automation and then to
knowledge automation.

In order to address the upcoming challenges of the
cyber-physical convergence in the frame of I4.0, as well as
to increase the efficiency of the digital twin, several pivotal
technological enablers have emerged (Fig. 1). Novel assem-
bly lines used in the production process are expected to boost
the reconfiguration of automated manufacturing systems and
provide robust operation and short production lifecycles
needed by manufacturing firms so as to stay competitive in
the marketplace [8]. The industrial Internet of Things (IIoT)
and the industrial cyber-physical systems (ICPS) utilization
in industrial settings are expected to revolutionize the way
enterprises conduct their business from a holistic viewpoint,
i.e., from shop-floor to business interactions, from suppliers
to customers, and from design to support across the whole
product and service lifecycle [9]. Different to consumer IoT,
IIoT is going to be characterized by larger IoT devices with
rich(er) capabilities for storage and computing, which will
individually generate large amounts of data, usually to be
both shared, and processed locally due to application require-
ments. This is considered one of the key evolutionary trends
in the coming years for IIoT by relevant expert groups; for
example NetWorld2020 [10]. The cost decrease coming from
industrial robot integration in the production process towards
mass customization is expected to further improve the robot
transparency and promote human-robot collaborations, just

as if they were human-human collaborations, since the robot
will have ideally the same set of skills and requirements
as a human co-worker [11]. Wireless sensor and actuator
networks (WSAN) are able to provide remote monitoring and
control of factory plants and machines for the sake of reduc-
ing potential equipment failures as well as improving the
industrial efficiency and productivity [12]. Networked contol
systems (NCS), which connect cyberspace to physical space
enabling the execution of several tasks from long distance,
eliminate unnecessary wiring reducing the complexity and
the overall cost in designing and implementing industrial
solutions [13]. The improvements coming from novel cus-
tomized protocol stacks in machine-to-machine (M2M) com-
munication, which achieve multi-gigabyte per-second data
rates, submicrosecond latencies, and ultrahigh reliability, are
expected to approximate the I4.0 requirements [14].

A grouping of those pivotal technological enablers is dis-
played in Fig. 1. The color code of Fig. 1 separates the
technological enablers in three fundamental categories which
are tied together through the common usage of M2M com-
munication. The first category, on the bottom, marked with
green color, includes industrial robots and assembly lines and
can be labeled as the production process components of the
industrial environment. The second category, marked with
purple color, includes WSANs and IIoT/ICPS systems and
can be labeled as the sensing and actuating infrastructure.
The third category, marked in orange color, includes the
NCS which can be labeled as the control point of automa-
tion. Industrial data of varying volume, traffic and critical-
ity are generated at those technological enablers and are
distributed across the entire industrial and manufacturing
ecosystem. The categorization is consistent with the general
architecture model for industrial automation, widely known
as the ‘‘industrial automation pyramid’’ [15]. The industrial
automation pyramid is displayed at the left side of Fig. 2.
The industrial automation pyramid is divided into several
layers, each with different sets of networks, demands, and
importance of various requirements. In the bottom of the
pyramid are the production process and field network (sens-
ing and actuation) layers (green and purple), which typically
consist of assembly lines, robots, IIoT devices, sensors and
actuators. At those two layers, the main requirements on data
communication is real-time behavior, low latency and low
jitter for control applications. The next layer (orange) is the
control network which typically consists of controllers and
connectivity servers. The higher layers are the supervision
and manufacturing execution layers (blue), which consist
of operator workplaces, engineering and monitoring stations
and servers, and significantly more enhanced computational,
communication and storage capabilities than the previous lay-
ers. At the highest layer lies the enterprise resource planning
(black). In general, the higher layers of the pyramid have
more relaxed constraints on latency and real-time properties
compared to the lower layers. The bottom three layers consist
of operations technology equipment and protocols, which are
the core critical part of the plant automation system. All the
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FIGURE 2. Mapping of traditional automation pyramid (left) to I4.0 data enabling technologies and data centric services (right).

above layers consist of information technology equipment
and protocols. Note that the focus of this survey is con-
centrated more on the production process, sensing/actuation,
control and supervision layers, and less on the manufacturing
execution and enterprise resource planning layers.

On top of the presented technological enablers, in order
to implement higher layers than the control layer of the
industrial automation pyramid, groundbreaking services will
further boost the I4.0 vision. Those services correspond
to layers from supervision and manufacturing execution to
enterprise resource planning and are marked with blue and
black colors, at the right side of Fig. 2. Big data analytics,
machine learning and semantic modeling are expected to
facilitate industrial integration and the cyber-physical conver-
gence because the typical data integration involves a lot of
data volumes, traffic, mappings and conversions among dif-
ferent data formats [16]. Those operations will typically take
place in local or global clouds which will horizontally cover
the industrial deployment installations. Decision making, job
scheduling and human-in-the-loop approaches are expected
to constitute a kind of hybrid control and supervision systems
with a dynamic structure and distributed intelligence capable
of meeting industrial needs and rapid market changes [17].
Augmented reality (AR), virtual reality (VR), camera and
vision identification services are expected to [18] mimic the
human information processing system in order to take advan-
tage of and interpret the ambient industrial environment.
Prognostics and prediction processes, anomalies detection
and fault diagnosis are expected not only to enable the col-
lection of data, but also to support advanced analytics to
extract useful insights with high returns on investments in the
manufacturing industry [19]. Last but not least, smart energy
management and increased security solutions are expected to

horizontally fortify a more sustainable production pro-
cess [20]. Those two horizontal services are present in all
operations of industrial networking, and are managed indi-
vidually or collaboratively across the different layers.

A. THE CRUCIAL ROLE OF DATA
Data is what enables the integration of the two worlds
(physical and cyber), what enables digital twins to inter-
act, what enables digital twins to represent their physical
counterparts, what enables knowledge extraction. The natural
evolution of the data enabling industrial technologies and
services leads to the generation of huge amounts of data;
data of many different volumes, traffic and criticality. Data
will serve as a fundamental resource to promote I4.0 from
machine automation to information automation and then to
knowledge automation. Also, data will enable fast control
cycles for applications like zero-defect manufacturing, allow-
ing information sharing across production sites of a given
factory operator, or across value chains composed by different
stakeholders. Indeed, concepts like common ‘‘data buses’’
connecting factory environments have already been identified
as the single most important enabler of novel I4.0 paradigms;
for example, the Industrial Data Space concept (now known
as International Data Spaces Association) introduced by
Fraunhofer [21]. In the past several decades, large amounts
of data have been generated in the industrial environments,
through the wide use of NCS. At the very beginning, those
large amounts of data have rarely been used for detailed
analyses, whichwere instead only used for routinely technical
checks and process log fulfillments. Later, awareness of the
importance in extracting information from data has taken a
leading role for the I4.0 [22]. This is because there has been
an exponential increase in the number of data sources, both
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archival and in real time. However, data is not equal to value
and consequently, to create value with data, one needs data
processes which facilitate data reduction to actionable items
thus creating value [23].

B. CONTRIBUTIONS OF THIS SURVEY ARTICLE
This article surveys the literature over the period
2015-2018 on data enabling industrial technologies and data
centric industrial services from the point of view of data man-
agement as it applies to networked industrial environments
and identifies open challenges for the future. A thorough
research in two categories of important journals has been
conducted, based on two different but complementary groups
of scientific fields:

• Communications, Networking and Computation
• Industrial, Manufacturing and Automation

Our article is an ambitious effort to capture the interplay
between data management and networked industrial envi-
ronments, instead of delving into one particular data centric
service or one data enabling technology exclusively. The
motivation behind this survey is to provide researchers com-
ing from both the communications/networking/computation
fields and the industrial/manufacturing/automation fields an
overview of data management issues, which are one of the
main components at the intersection between these two large
domains.

Fig. 3 displays the primary sources of information
for this article, identified after an exhaustive literature
research. There are some articles coming from some other
sources as well, but the list of Fig. 3 represents the sources
from which the critical mass of the references of this article
were drawn. The choice of reported articles is highly selec-
tive, due to the fact that in order to be included, an arti-
cle needs to provide new knowledge on a technological
enabler, service, architecture or methodology directly applied
on industrial environments. For this reason, a large portion
of related literature which investigates similar concepts, but
on environments other than industrial, has purposefully been
excluded from the current survey.

Although there are existing surveys which cover some
data-centric aspects of industrial processes, like indus-
trial data management [24], [25], data-driven manufactur-
ing [26]–[28] and cloud manufacturing [29]–[31], to the best
of our knowledge, there is no existing survey that covers
horizontally, in a holistic way, diverse aspects of datamanage-
ment in heterogenous networked environments of industrial
deployments. Consequently, to the best of our knowledge,
this is the first comprehensive survey which discusses data
management in networked industrial environments in a broad
view, exposing different use cases, technologies and services
that can support efficient (distributed) data management in
I4.0 contexts. A comparison to other published surveys is
provided in section II. The major contributions of this article
are the following:

FIGURE 3. Primary sources of information. Focus on two fields:
Communications/Networking/Computation and
Industrial/Manufacturing/Automation.

1) An extraction of data properties (volume, variety, traf-
fic, criticality) and an identification of the correspond-
ing data enabling technologies in different I4.0 fun-
damental use cases, based on practical applications
(section III).

2) A detailed outline of recent I4.0 architectural designs
with respect to their data management philosophy (data
presence, data coordination, data computation) and the
extent of their distributiveness (section IV).

3) A holistic survey and taxonomy of the latest I4.0 data
enabling technologies (section V-A) and data centric
services (section V-B), spanning all the way from the
field level deep in the physical deployments up to the
cloud level. This outline is based on an exhaustive
research of recent publications and covers the largest
part of the I4.0 automation pyramid (Fig. 2).

4) A discussion on future interesting open research
challenges regarding data management in networked
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FIGURE 4. Roadmap of this article.

industrial environments and some crisp insights for
the design of future data management applications
(section VI).

The roadmap of this article is displayed in Fig. 4.

II. COMPARISON WITH EXISTING RELATED SURVEY
ARTICLES
The purpose of this article is to provide a holistic overview
on data management as it applies to networked industrial
environments, and to review a large number of technologies
and services brought forth by the relevant I4.0 use cases
and architectural designs. Although both data management
and industrial networks are quite vibrant research fields, they
are rarely mentioned together in a holistic manner. There
exist, however, several published works that cover in depth
multiple niche areas found in our survey. In fact, some of them
explore several data centric aspects, but for highly focused
application areas, services and technologies. This section will
provide an overview of some of those relevant studies. Table 1
displays the comparison with other survey articles focusing
on networked industrial environments.

A. INDUSTRIAL DATA MANAGEMENT FOR DEDICATED
APPLICATIONS
The surveys which can be considered the most relevant to
the current article investigate industrial data management.
In [24], Shu et al. present a survey on the IIoT aspects of
large-scale petrochemical plants as well as recent activities
in communication standards for the IoT in industries, with
a slight flavor of data management. The article addresses
the key enabling middleware approaches and highlights the
research issues of data management in the IoT for large-scale

petrochemical plants. As such, it is entirely focused on this
specific use case. In [25], Diez-Olivan et al. provide a sur-
vey of the recent developments in data fusion and machine
learning for industrial prognosis. To this end, a principled
categorization of feature extraction techniques and machine
learning methods is provided. This analysis is highly focused
on the data centric services of machine learning, data fusion
and prognostics. Different from those works, we investigate
data management aspects in a much wider spectrum of use
cases and data centric services. For example, they do not deal
with distributed, localised data management solutions, which
are becoming more and more fundamental for I4.0 applica-
tions, and which we instead cover in this survey.

B. DATA-DRIVEN MANUFACTURING
Another group of relevant articles are the surveys inves-
tigating data-driven manufacturing. In [26], Dekhtiar et al.
assume that data processing automation and control is not
only desirable but rather necessary in order to prevent pro-
hibitive data analytics costs. Consequently, they focus on
highlighting the major specificities of data engineering and
the data-processing difficulties which are inherent to data
coming from the manufacturing industry. They specifically
emphasize on the data centric services of machine learning
and deep learning and the survey is highly focused both in
terms of use case and in terms of services. In [27], Yin et al.
aim to provide an overview of data-based techniques with
recent developments focused on the industrial closed-loop
applications like process monitoring and control. Another
overview on the model-based control and data-driven control
methods is presented in [28].

C. CLOUD MANUFACTURING
Cloud manufacturing transforms manufacturing resources
and manufacturing capabilities into manufacturing services,
which can be managed and operated in an intelligent and
unified way, so as to enable the full sharing and circulating
of manufacturing resources and manufacturing capabilities.
He and Xu [29] and Adamson et al. [31] survey the state of
the art in the area of cloudmanufacturing, identify recent con-
cepts, implementations and technologies, and discuss poten-
tial research trends and opportunities. In [30], Babiceanu and
Seker provide a review of themore specific field of virtualiza-
tion and cloud-based services for manufacturing systems and
of the use of big data analytics for planning and control of
manufacturing operations. Although those surveys incorpo-
rate some data related concepts, they focus their investigation
on the cloud layer of networked manufacturing environments
and explore a specific subset of related technologies and
services.

D. INDUSTRIAL WIRELESS STANDARDS
As wireless technologies penetrate more and more the
manufacturing landscape, industrial wireless standards are
emerging. Reference [32] discusses key aspects of the four
most popular industrial wireless sensor network standards:
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TABLE 1. Comparison with existing survey articles on networked industrial environments (2015-2018).

ZigBee, WirelessHART, ISA100.11a, and WIA-PA. The
detailed design and protocol architectures are compara-
tively examined. Reference [33] provides a clear and struc-
tured overview of all the new 802.15.4e mechanisms and
describes the details of the main 802.15.4e MAC behav-
ior modes, namely Time Slotted Channel Hopping (TSCH),
Deterministic and Synchronous Multi-channel Extension
(DSME), and Low Latency Deterministic Network (LLDN).
Reference [34] depicts a systematic approach to review IIoT
technology standards and patents. The literature of emerg-
ing IIoT standards from the International Organization for
Standardization (ISO), the International Electrotechnical
Commission (IEC) and the Guobiao standards (GB), and
global patents issued in US, Europe, China and World Intel-
lectual Property Organization (WIPO) are systematically pre-
sented in this study. Reference [35] reviews the scheduling
mechanisms for 802.15.4-TSCH and slow channel hopping
MAC in low power industrial wireless networks. It catego-
rizes the numerous existing solutions according to their objec-
tives (for example, high-reliability, mobility support) and
approaches and identifies some open challenges, expected
to attract much attention over the next few years. All those
studies provide an interesting glimpse into the standardization
domain for industrial networked environments, but, naturally,
their focus is highly specific and is very different from the
holistic approach focusing on data management which is
presented in our survey.

E. IIOT TECHNOLOGIES
Due to the fact that IIoT is a core technological enabler
for the realization of I4.0, there is a significant number of
surveys that report on various IIoT aspects. Reference [36]
provides an overview of the Industrial Internet with the
emphasis on the architecture, enabling technologies, appli-

cations, and existing challenges. More specifically, it investi-
gates the enabling technologies of each layer that cover from
industrial networking, industrial intelligent sensing, cloud
computing, big data, smart control, and security manage-
ment. Moreover, it discusses the application domains that
are gradually transformed by the Industrial Internet technolo-
gies, including energy, health care, manufacturing, public
section, and transportation. A detailed discussion on design
objectives, challenges, and solutions, for WSANs, are pre-
sented in [37]. A careful evaluation of industrial systems,
deadlines, and possible hazards in industrial atmosphere are
discussed. The primary objective of [38] is to explore the
state of the art as well as the state of practice of I4.0 relating
technologies in the construction industry by pointing out the
political, economic, social, technological, environmental and
legal implications of its adoption. The recent advancements
in FPGA technology, emphasizing the novel features that
may significantly contribute to the development of more effi-
cient digital systems for industrial applications are presented
in [39].Various proposed controllers for high-mix semicon-
ductor manufacturing processes are surveyed in [40] from an
application and theoretical point of view. Remaining chal-
lenges and directions for future work are also summarized
with the intent of drawing attention to these problems in the
systems and process control communities. In [41], a com-
prehensive survey of IIoT technologies has been presented,
including IIoT architectural approaches, applications and
characteristics, existing research efforts on control, network-
ing and computing systems in IIoT, as well as challenges and
future research needs. Finally, in [42], Queiroz et al. provide
an overview of the standards used to implement industrial
WSANs and discuss the characteristics of the wireless chan-
nel in industrial environments. Different to the current survey,
all those articles have an exclusive focus on a subset of
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technological enablers, IIoT andWSAN technologies, and do
not deal specifically with data management issues.

F. SCHEDULING AND SYNCHRONIZATION
An interesting higher level application for the I4.0 is
the scheduling and synchronization of multiple factories.
To become competitive in today’s rapidly changing market
requirements, factories have shifted from a centralized to
a more decentralized structure, in many areas of decision
making including scheduling. In multi-factory production
network, each factory can be considered as an individual
entity which has different data requirements and is subject to
different constraints, for example, machine advances, worker
cost, tax, close to suppliers, and transportation facilities,
etc. Since limited resources make scheduling an important
decision in the production, efficient scheduling solutions
and data management are vital for improving the produc-
tivity. Reference [43] provides a review on the multi-factory
machine scheduling. It classifies and reviews the literature
according to shop environments, including single machine,
parallel machines, flowshop, job shop, and open shop. The
concept of technological, organizational, geographical and
cognitive proximity is used in [44] to analyze synchronization
between different industrial stakeholders in the construction
industry. The authors present a framework for explaining
I4.0 concepts that increase or reduce proximity.

G. PRODUCT-SERVICE SYSTEMS
Product-service systems are business models that provide
for cohesive delivery of products and services through effi-
cient data collection and processing, as well as relevant
technological enablers. Product-service system models are
emerging as a means to enable collaborative production and
consumption of both products and services, with the aim of
pro-environmental outcomes [50]. They are thus an impor-
tant application on the top of the I4.0 automation pyramid.
Reference [45] is dedicated to the systematic status survey
on product-service systems requirement management. The
results of this work provides references for future research
in the area of product-service systems development, with the
aim of offering integrated and holistic requirements man-
agement for product-service systems. It analyzes the state of
the art of requirements management for product-service sys-
tems by reviewing extensive literature of requirement identi-
fication, analysis, specification, and forecast. Reference [46]
reviews multiple defect types of various inspected products
which can be referenced for further implementations and
improvements. The objective of [47] is to provide a com-
prehensive literature review on recent research and develop-
ment in product modeling from three perspectives: product
knowledge in product representation, distributed computing
in information technology, and product lifecycle in product
development process. The product-service field this is a very
relevant application area for our survey, where data man-
agement can have a significant impact, due to the fact that

smart services can be planned more efficiently based on data
collected during product use; for example, structured data
from sensors, which are embedded in the product, can provide
feedback information.

H. INDUSTRIAL COGNITIVE RADIO
This is a specialized group of survey articles, the rele-
vance of which to data management is relative. Neverthe-
less, we briefly mention them because the core technological
enabler is already applied to industrial networked environ-
ments. Reference [48] summarizes cognitive radio methods
relevant to industrial applications, covering cognitive radio
architecture, spectrum access and interference management,
spectrum sensing, dynamic spectrum access, game theory,
and cognitive radio network security. Reference [49] high-
lights and discusses important QoS requirements of IWSN
as well as efforts of existing IWSN standards to address the
challenges. It also discusses the potential and how cognitive
radio and spectrum handoff can be useful in the attempt to
provide real-time reliable and smooth communication for
IWSNs.

III. DATA PROPERTIES OF FUNDAMENTAL I4.0 USE
CASES
In this section, we provide a thorough extraction of data
properties in different I4.0 fundamental use cases, based on
practical applications reported in recent research contribu-
tions. To the best of our knowledge, such practical extrac-
tion, coming from real world applications and reports does
not exist in previous work for the reported activity period.
At the same time, we identify the basic set of technolog-
ical enablers that are needed for the realization of those
important use cases, and we use them as a compass for
the follow-up analysis which is presented in section V. The
extracted data properties about the use cases are displayed
in Table 2. Our interest is to extract three specific data prop-
erties, in order to understand the data requirements in recent
I4.0 use cases. The four data properties we focus on are the
following:

1) Data volume: The size of the data to be circulated in
a network environment is of crucial importance to the
network design and the technological enablers used in
the deployment. In industrial networked environments
there can be a diversity of data volumes, depending
on the scope of each use case. We label as data of
small volume the data of lower sizes, such as sensor
measurements, of medium volume the data of higher
sizes, such as images or sound files, and of big volume,
the data of the highest sizes, such as videos and detailed
3D representations.

2) Data variety: The diversity of the data can also be vari-
able, according to the use case. We label as diverse the
data variety in use cases where different kinds of data
are needed (for example, a use case which necessitates
sensor readings, 3D models and raw camera images)
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TABLE 2. Data properties extracted from recent works on various I4.0 use cases.

and as uniform the data variety in use cases where
similar kinds of data are needed (for example, a use
case which necessitates only RFID readings). The data
variety can significantly affect algorithmic decisions
and service provisioning when targeting efficient solu-
tions per use case.

3) Data traffic: Different data varieties, as well as different
data generation velocities and use case requirements
can lead to diverse traffic patterns in an industrial net-
worked environment. Although deterministic solutions
for traffic regulation have started becoming mature for
various types of wired industrial deployments, thewire-
less part is still facing great challenges and comes
hand in hand with strict I4.0 requirements. Communi-
cation support for industrial automation is challenging
in wireless environments as the lossy nature of radio
links and node unreliability greatly affects the perfor-
mance of real-time data delivery. We label as intense
the data traffic in a networkwhere large amounts of data
have to be generated and delivered in small amounts of
time, in many cases without predefined global sched-
ules, typically leading to various networking problems
necessitating algorithmic solutions for traffic manage-
ment. On the other hand, we label as mild the data
traffic in a network where data can be circulated
without the need of sophisticated traffic management
solutions.

4) Data criticality: Data that are not managed accord-
ing to the underlying I4.0 requirements may adversely
affect the performance of system monitoring, con-
trol and safety. For example in chemical plant,
the chemical leakage must be informed in predefined
times [51]. This inherent importance separates the
data in two major categories, critical and non-critical
data. We label the first category as data of high
criticality and the second category as data of low
criticality.

Based on the recent literature and focusing on the extracted
data properties, we identify the most important industrial
use cases in which data management can be effectively
applied.

A. OIL / GAS
Large-scale petrochemical plants incorporate dense wireless
devices such as RFID tags for machine identification, sen-
sors for large-scale rotational equipment monitoring and fault
diagnosis, and employ IIoT technologies for tight and seam-
less integration between lower layer components, such as
sensors and actuators, to the higher level connected with the
cloud platforms [24]. In order to ensure the safety of pro-
duction sites in large petrochemical industries [53], and long
interconnected gas networks [54] those sensorial artifacts
are positioned around gas pipes, targeting 24/7 monitoring.
Data generated by the wireless sensors about parameters and
abnormal events are processed for decision making thereby
improving production, predicting maintenance and failures
for the industrial equipment. Data usually come from sensor
devices in small volumes, typically including sensormeasure-
ments of various types. Although the variety can be limited to
the various sensor readings, there can be increased wireless
traffic in the network; a result of thousands of sensors operat-
ing simultaneously both in real-time and periodically. The use
case offers a mix of both critical and non-critical applications.
An example of the first is a gas leakage must be informed as
soon as possible. An example of the second is the predictive
maintenance of a set of gas pipes over an interval of some
years.

B. AUTOMOTIVE
In the last two decades, distributed embedded electronic
applications have become the norm in a large part of the
automotive assembly industry. Due to critical requirements
and the distributed nature of the various electronic control
units implementing assembly functions, the guarantee on
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end-to-end timing constraints in those networked industrial
environments has become an important part of the design
process of a car [56]. In addition to existing stand-alone
solutions, cooperating networked information and control
systems are increasingly used as tools for the coordination
of this challenge for production support [57]. The volume of
generated data can vary in the automotive production pro-
cess, providing also a great range of diversity. For example,
there can be small volumes of data (positioning systems
with various sensors for determination of the exact position
of vehicles, tools, resources and processes), as well as big
volumes of data (assembly assistance system through mon-
itors or data glasses which guide the workers during their
working process by exploiting audio-visual data, or, zero
defect manufacturing which is able to shorten the manufac-
turing time by introducing complete metrological software
in the machine tools and makes it possible to inspect the
part inside the machine, allowing the user to do the verifica-
tion and the set up from intuitive graphic interfaces). Today,
the majority of the generated data is usually distributed via
wired deterministic networks, and for this reason the traffic
can be regulated in an offline, centralized manner. In many
recent cases in this domain (for example, the aforementioned
zero defect manufacturing), however, wiring is not welcome,
as wired infrastructure imposes constraints and maintenance
costs. At the same time there are huge amounts of data rates
generated from the manufacturing monitoring components,
which need to be analyzed on the spot for delay reasons.
Current centralized solutions are not suitable to scale such
systems to the level required by a full automatization of such
processes at the factory scale.

C. MARINE VESSELS
Today’s shipbuilding industry is characterized by one-off
manufacturing and complex construction processes, and as
such, it is difficult to estimate a construction process at the
planning stage and many diverse problems are involved, such
as backorders and over-loaded capacity between consecutive
processes [58]. Similar to the automotive industry’s require-
ments, the volume of generated data can vary in the marine
vessel production process, providing also a great range of
diversity. Different to the automotive industry, the construc-
tion yards are the central point in this family of use cases and
play an essential role in bringing together different parties
throughout the shipbuilding value chain. Data processing, can
be used for fault detection and diagnosis in such complex
industrial processes, starting from the construction stage of
a marine vessel and finishing at its running operation [59].
Sensing technology is a cornerstone formany industrial appli-
cations, including preventative equipment maintenance, both
inside fabrication plants and onboard the marine vessels [60].
Recent shipbuilding industry advancements introduce pro-
duction management methodologies and a pre-verification in
virtual environments. Related tools facilitate the traffic and
criticality constraints on the production phase and lower their
intensity [61].

D. ASSET TRACKING
Mass production in manufacturing puts greater emphasis on
real-time asset location monitoring which renders the sensor
data to be of paramount importance. When location informa-
tion can be associated with monitored contextual informa-
tion, for example, machine power usage and vibration, it can
be used to provide smart monitoring information, such as
which components have been machined by a worn or dam-
aged tool [62]. RFID is the most commonly utilized product
tracking and automation technology, especially useful in the
supply chain industry [63], as well as in more specialized
industries of asset tracking like identification of individual
farm animals [65]. The generated data can be diverse over
all asset tracking applications, but usually only one tracking
method is used for each individual application, leading to
a uniform data variety. The volume of the data also varies
per application, coming from some simple RFID readings in
product tracking to images or videos in farm identification.
The data criticality is low, as the related data processing and
calculations are conducted a posteriori.

E. CUSTOMIZED ASSEMBLY
Serial assembly lines are mainly used for large scale pro-
duction since they can provide short cycle times and high
production rates with high efficiency in terms of cost, time
and quality. In pursuit of flexibility, different paradigms have
been investigated in terms of automation level and production
system organization [67], like customized assembly lines.
IIoT integrates the key technologies of industrial communi-
cation, computing, and control so as to provide a new way
for a wide range of assembly resources to optimize manage-
ment and dynamic scheduling [66]. With the technological
enablers on flexible assembly lines ranging from IIoT and
ICPS to robotic bimanipulators, NCS and moving robots,
it is natural that there is a great diversity of data resources
to be analyzed. The volumes of data significantly differ from
application to application. For example, in the case of mobile
robotic assembly, large volumes of motion data are usually
exchanged between the different controllers for further data
fusion, while in the case of custom part identification, smaller
identification data are needed. This use case family is usually
characterized by a high criticality factor, due to the fact that
the assembly process has to be quick and accurate, affecting
accordingly the related data processes.

F. CRANE SCHEDULING
Container terminals have to improve their service efficiency
to seek the optimal trade-off between energy-saving and
service efficiency improvement. Since the energy consump-
tion and service efficiency of container terminals are mainly
contributed by the handling cranes, the scheduling of the
handling cranes is critical [68]. Moreover, with the increase
of sizes of container vessels, container terminals are encoun-
tering another challenge, i.e., the rapid handling of containers
for mega-vessels. Thus, container terminals must shorten
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the vessel turnaround time, which is an influential factor of
their service level [69]. Due to the fact that the necessary
computations are conducted in an offline manner, usually via
optimization modules, the data properties of this use case are
simple. An input module, which is the basis for generating
crane schedules and evaluating the schedules, consists of two
data parts: static data and dynamic data. The static data part
include all parameters such as the handling volume of each
container, the time window on each container and the han-
dling efficiency of each crane. The other parameters are used
for evaluation, such as the cost of unit energy consumption.
The dynamic data include all decision variables, which are
generated by the optimization module.

G. REFRIDGERATED WAREHOUSES
Changing the cold storage temperature set points of the
refrigerated warehouses will cause the reduction of product
quality and further increase economic costs to the industrial
consumers. Reduction of the electricity price on the grid,
the total costs of maintenance, and the total energy consump-
tion comparing has recently been a target objective of opera-
tions research [70]. This use case is characterized by small
volumes of sensor data (mainly temperature), periodically
sent to a central control station for long term planning.

H. HEALTHCARE MONITORING
Industrial manufacturing has recently started embedding new
functions in the form of safety monitoring or smart factories.
Another recent trend of interest is the combination of het-
erogeneous services from different fields for providing auto-
mated healthcare services in industrial environments [71].
As with typical monitoring use cases, the data come in small
volumes, from a range of different but limited sensors target-
ing long term or real-time healthcare optimization.

I. PRODUCTION CONTROL
Controlling the various stages and processes during the pro-
duction process has attracted a widespread research interest
in various areas, ranging from the shop floor with vibration
control [72], PLC design control [73] up to the application
layer with economic optimizations [74]. Depending on the
layer of the industrial integration we are considering, data
volumes can be small or large, and the related traffic in the
networked environment low or high.

IV. DATA MANAGEMENT TRENDS IN RECENT
I4.0 ARCHITECTURAL DESIGNS
In this section we attempt to place recent architectural
innovations in the broader context of networked indus-
trial environments by surveying the fundamentals of both
recently proposed I4.0 enabling architectures and by extract-
ing the data management philosophy of these architectural
alternatives. The section’s primary emphasis concerns data
related concepts, rather than specific architectural constructs.
A number of research teams have proposed the development
of relevant architectures which incorporate either directly

or indirectly some kind of data management interfaces and
control mechanisms across one or more architectural lay-
ers. For the reported period, 2015-2018, the most impor-
tant I4.0 enabling architectural designs have been presented
in [75]–[99].

The data management information is displayed in Table 3.
We aim at extracting three specific data properties, in order
to understand the recent trends in recent I4.0 architectural
design. Meanwhile, we also identify the major supported
technological enablers per architectural design. The three
data properties we focus are the following:

1) Data presence: Data can be acquired from specifi-
cally defined, localized sources, or from pervasive data
generators. We label the first category as localized
data presence. This category usually includes (but is
not limited to) data generation sources such as fixed
robotic manipulators in a factory environment, station-
ary network controllers, servers, office workstations,
and fieldbus masters. We label the second category as
ubiquitous data presence. This category includes (but,
again, is not limited to) workers’ portable devices, IIoT
enablers, sensors and actuators with uncertain commu-
nication patterns and online third party data sources (for
example, via Internet).

2) Data coordination: Coordination of the industrial pro-
cesses, based on the input data, can be performed by
global or local process (or network) managers. In the
case of involvement of local managers, usually hier-
archy is applied, where the coordination is structured
among different layers of managers. We label the first
case of global managers as centralized coordination
and the second case of local managers participating
in hierarchical managing as hierarchical coordination.
The most usual trade-off that exists between the dif-
ferent types of coordination is balancing the effect of
central control on the network over the minimization
of important metrics such as end-to-end data delivery
delay and energy consumption.

3) Data computation: Computation tasks over the
received data can take place either on central entities
with significant computational abilities (which may
or may not coincide with the coordination managers)
or on a large part, or all, of the devices available in
the architectural design. We label the first method as
concentrated computation and the second method as
distributed computation. Following the concentrated
computation model, implies stronger computational
power located on single computational components,
while following the distributed computation model
implies that computation components are located on
different networked computers (usually of lower com-
putational ability compared to the concentrated compu-
tation case), which communicate and coordinate their
actions by passing data to one another. As with typical
distributed systems, the three significant characteristics
of distributed computation in I4.0 are computation
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TABLE 3. Data management trends in recent I4.0 architectural designs.

concurrency, lack of a global clock, and independent
failure of the devices. For this reason, usually, a failure
in the concentrated computation case can lead to much
higher failure impact on the industrial processes.

A conclusion drawn by the information extracted by the
relevant articles and provided in Table 3 is that the archi-
tectural trends can be classified in two distinct categories,
each one with their respective data management philoso-
phy. On the one hand, we have a set of architectures deal-
ing mostly with localized data, coordinating the industrial
devices in a centralized manner and providing a mix of
either concentrated or distributed computing. The basic data
enabling technologies for those architectural designs are the
assembly line and the industrial robots. On the other hand,
we have a set of architectures dealing mostly with ubiqui-
tous data presence, with a twist on coordination towards a
hierarchical manner, providing again a mix of centralized
and distributed computation. The basic data enabling tech-
nologies for those architectural designs are IIoT / ICPS, and
WSAN. This distinction in two categories of architectural
data management makes clear also the diversity of the two
research fields (Communications/Networking/Computation
and Industrial/Manufacturing/Automation), as well as the
necessity of a convergence between the two fields in order
to address the I4.0 requirements with common tools and
methodologies. This fact is identified as an open challenge
for the future and is also presented in section VI-D.

A. ARCHITECTURES FOCUSING ON ASSEMBLY LINE AND
INDUSTRIAL ROBOTS
The first category of architectures targets a set of highly
diverse manufacturing applications, where advanced assem-
bly line technological solutions are the key to the satisfac-
tion of the emerging I4.0 requirements. The use of flexible

computer-aided manufacturing systems to produce custom
output leads to architectures for mass customization and com-
puter integrated manufacturing. Furthermore, collaborative
and reconfigurable manufacturing is targeting at providing
rapid changes in the manufacturing structure, as well as in
the hardware and software components, in order to quickly
adjust the production capacity and functionality within a part
family, in response to sudden market changes or intrinsic
system change. Also, dynamic manufacturing service com-
position can provide the users distributed in different places
with the manufacturing resource and manufacturing ability
services through the centralized management by using opti-
mized cloud infrastructures. In the next paragraph, we present
themost recent relevant architectural contributions.We do not
compile a unified prototypical architectural scheme (contrary
to the next section in which we provide one), as the different
designs and application areas are very diverse.

In [76], Bonev et al. introduce an architecture for the
design and customization of product families. Specifi-
cally, they design a formal computer-assisted approach that
addresses the requirements for the design of product fam-
ily architecture as identified by academia and industry. The
suggested design is based on formal computational models
which employ related centralized methods, not leaving much
space for ubiquitous data presence and coordination. In [78],
Ferreira et al. present an architectural design for interoper-
able end-to-end manufacturing which guarantees seamless
interoperability, thus ensuring proper communication and
data exchange between all the partners in a manufacturing
network throughout the entire manufacturing life cycle, from
supplier search to manufacturing execution and monitoring.
In terms of data presence, although the data can lie on dif-
ferent physical locations (for example, different factories)
we consider the layout as localized, since it is perfectly
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FIGURE 5. Decentralized architecture for cloud manufacturing [81].

defined beforehands where, when and how the data will
be accessed by the platform provided in the architecture.
Cloud manufacturing has been a vibrant field for architec-
tural research. In [81], Skulj et al. argue that existing cloud
manufacturing models operate in a centralized way through
a cloud manufacturing platform, the management of which
is identified as a critical part of the manufacturing cloud
operation, and strive for decentralization. In fact, they pro-
pose a decentralized network architecture which builds upon
the concept of autonomous work systems for use as service
providers (Fig. 5). In this design, data can be generated
from various sources, even from third-party online knowl-
edge clouds and the various computations can happen in
different cloud services, with a decentralized coordination,
distributively among the users. In [97] Chen et al. intro-
duce the concept of a cloud manufacturing framework with
auto-scaling capability, aiming at providing a systematic and
rapid development approach for building cloud manufactur-
ing systems. Contrary to [81], the design of [97] provides
a structured and centralized bulletin board data exchange
mechanism, serving specifically defined data. However, due
to the fact that workers are involved in the design, the number
of which varies from time to time (due to the auto-scaling
mechanism of the cloud manufacturing framework), the data
presence can be considered as ubiquitous also in this case.
In [86], Xue et al. investigate how to find the optimal man-
ufacturing service composition path from a service compo-
sition network. In order to satisfy the specific demands of
manufacturing service composition, they provide a design
which solves two problems: how to design the appropriate
QoS evaluation model to depict the manufacturing service
composition based on networked collaboration, and how to
improve the existing service composition method to deal with
the rapid increase of candidate service composition solutions.
The structure of service supporting system they propose is

highly centralized, with regulated coordination and compu-
tation of the data resources, which come on the one end
from manufacturing, lab and management sources, and on
the other end from service requestors. In [88], Atmojo et al.
introduce a service oriented architectural framework that sup-
ports a new programming paradigm for designing dynamic
distributed manufacturing systems. The framework supports
concurrency and reactivity of multiple computing machines
that run data computations asynchronously with each other.
Each machine is potentially running concurrent software
behaviors that need to execute in synchronously with each
other. The entire coordination of the operations is regulated
by a master controller. In [90], Campanelli et al. design an
architecture to integrate modules of two industrial standards,
IEC 61131-3 and IEC 61499, allowing the exploitation of
the benefits of both. The proposed architecture is based on
the coexistence of control software of the two standards.
As both standards refer to PLCs and control systems, the pres-
ence, coordination and computation of data are fundamen-
tally concentrated. In [96], Delaram and Valilai propose a
layered architecture which covers five critical aspects of com-
puter integratedmanufacturing, separated in five architectural
layers: physical, functional, managerial, informational and
control. Although the holistic design of this architecture is
hierarchical and each layer is a separate entity from the other
layers, the intra-layer functions regarding coordination and
computation can be considered focused on central entities.
In [75], Gonzalez et al. present a general framework for
mobile robot navigation in industrial environments in which
the open-loop behavior of the robot and the specifications
are based on automata. A modular supervisory controller
ensures the correct navigation of the robot in the presence of
unpredictable obstacles and is obtained by the conjunction of
two supervisors: a first one that enforces the robot to follow
the path defined by the planner and a second one that imposes
other specifications such as prevention of collisions, task and
movement management, and distinction between permanent
and intermittent obstacles. The data related components are
highly centralized both in the planning and in the supervising
process of the robot.

B. ARCHITECTURES FOCUSING ON IIOT / ICPS, AND
WSAN
The second category of architectures targets networking,
communication and service orientedmanagement andmainly
includes IIoT and WSAN technologies. Interconnected sys-
tems of such types focus on closely monitoring ambi-
ent conditions, generating useful data and synchronize the
data between the physical connected systems and cyber
computational space. Depending on the physical system
being monitored, the approach for designing and implement-
ing the framework for interconnecting the systems might
differ [100]. However, after reviewing the most recent archi-
tectural contributions, we are able to compile a prototypical
architectural scheme, as the different designs and application
areas present some similarities both regarding the settings
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FIGURE 6. Unified prototypical architectural scheme extracted from recent architectures focusing on IIoT / ICPS and
WSAN.

they consider and regarding the methodological approaches
they use (contrary to the previous section in which a uni-
fied prototypical architectural scheme was not feasible to
obtain). This unified prototypical architectural scheme is
displayed in Fig. 6. Typically, the design effort is placed
on the integration of different communication technologies
and on the hierarchical data management across all layers
(field, gateway, control), through local and global managers.
More specifically, the field layer includes all the sensing
and actuating devices of the industrial deployment, as well
as their intra-field communication methods. The field layer
is characterized by its great technological (devices ranging
from constrained sensor motes to portable devices, cameras
and wearables) and communication (wired and wireless com-
munication protocols of multiple types) variety. On top of
the field layer, there is the gateway layer which includes
various networking devices which can typically accomplish
two activities: regulate the data distribution between the field
layer and the control layer (which is on top of the gate-
way layer), and act as hierarchical, local managers for data
operations in the field layer. This management delegation is
performed by the control layer, which includes the global
managers (usually NCS, servers, and powerful computational
systems), and is responsible for the overall control and the
efficient data distribution of the entire industrial installation.

In [85], Lucas-Estan et al. introduce a hybrid wireless
communication and data management architectural design.
This design is coined as hybrid due to the fact that it is
actually a multi-tier network architecture in which distributed
communication and data entities interact in order to coordi-
nate their decisions in a hierarchical manner and ensure the
correct operation of the whole network. Devices scattered
in the network deployment have the ability to perform local
computations, lightening the burden of local and global man-
agers by offloading data and computation. The architecture
is designed to support ubiquitous data existence in various

types of industrial environments. In [80], Wang et al. present
an energy-efficient architecture for IIoT deployments, which
consists of an IIoT nodes domain, RESTful service hosted
networks, a cloud server, and user applications. This archi-
tecture focuses on the IIoT domain where large amounts of
energy are consumed by large numbers of nodes. The archi-
tecture includes three layers: the IIoT layer, the gateway layer,
and the control layer. Unlike other hierarchical deployment
schemes like [85], in this architecture direct communications
between IIoT nodes are not allowed. Also, the gateway nodes
are always used as central computation entities and the con-
trol node as coordination entity, allowing IIoT nodes to not
necessary to implement sophisticated hardware or run com-
plicated routing mechanisms, thus reducing computational
complexity and system cost. In [82], Szymanski argue that
a convergence between deterministic industrial networks and
best effort IIoT should occur and support low latency and jit-
ter, and based on this argument, they provide an architectural
design for a deterministic IIoT core network consisting of
many simple deterministic packet switches configured by an
SDN control plane. Although there is a pervasive presence
of data due to the IIoT support, the determinism imposes a
highly centralized data coordination and schedules compu-
tation. In [84], Al-Dabbagh and Chen propose a closed loop
design in order to facilitate the deployment of fully automated
wireless networked control systems. The topology of the
architecture consists of a plant system having sensor and
actuator nodes, a controller system having input and output
nodes, an intermediate network system having interconnected
nodes, and wireless communication links for the information
transfer between the different nodes. The data presence in this
setting is ubiquitous, as data can be received by a wide num-
ber of sensors placed in the network. However, both the com-
putation and the coordination is taking place centrally at the
controller system, which uses the input nodes to receive infor-
mation and the output nodes to provide controller decisions.

97064 VOLUME 7, 2019



T. P. Raptis et al.: Data Management in Industry 4.0

Service-oriented modeling has attracted a lot of attention in
the I4.0 architectural design community. In [79], Sadok et al.
suggest a service oriented architecturewhich exposes objects’
capabilities by means of web services, thus supporting syn-
tactic and semantic interoperability among different tech-
nologies. WSAN devices and legacy subsystems cooperate
while orchestrated by a manager in charge of enforcing a
distributed logic. The architecture supports dynamic spec-
trummanagement, distributed control logic, object virtualiza-
tion, WSANs gateways, a SCADA gateway service, and data
fusion transport capability. In order to implement those func-
tionalities, a hierarchical coordination scheme has been fol-
lowed with different kinds of managers provided as reusable
core software components. The middleware’s virtualization
layer enables the architecture to support pervasive data access
and management. In [87], Carlsson et al. suggest another
service oriented architecture, targeting structured migration
of process control systems. The argue that although today’s
control systems are typically structured in a hierarchical
manner, there are nevertheless non-resolved challenges with
respect to various fundamental migration functionalities. The
suggested approach combines distributed computation abili-
ties with a per-layer centralized coordination, handling data
coming from ubiquitous data sources like WSANs. A partic-
ular note about this design is that the coordination can also
be viewed as decentralized, if we consider the entire system
definition and if we do not examine each architectural layer
individually. In [95], Uslander and Epple argue that the scope
of I4.0 shall be defined by considering the major value chains
and in order to achieve this they introduce a design and the
basic process to achieve a reference model for I4.0 service
architectures. The design relies upon the assumption that a
reference model should take into account existing reference
models for distributed processing as well as those of the
Internet of Service and IIoT. This architecture provides a
computational modularity which enables distribution through
functional decomposition of the system into objects which
interact at interfaces. Campanelli et al. [90], Jin et al. [91],
introduce two different, yet complementary hierarchical data
transmission architectural designs for WSAN and smart fac-
tories. Those architectures constitute an ideal example of
pervasive data generation, as data are received from a wide
variety of stationary and mobile sources, such as automatic
guided vehicles, mobile workers’ devices and WSANs. Hier-
archical coordination lies at the core of those designs as
well as the decentralized computation through subnetworks
formation, leader election algorithms and mobile intelligence
units. In [92], Ge and Chen introduce a distributed modeling
framework for plant-wide process monitoring. Based on this
framework, the plant-widemonitoring process is decomposed
into different blocks, and statistical data models are con-
structed in those blocks. The data obtained from different
blocks are integrated through a centrally located decision
fusion algorithm. Due to the large volume of the pervasive
plant-wide data generation, the authors note that unlike tra-
ditional industrial processes, several new data characteristics

should be paid attention to in the plant-wide process: the data
volume in the plant-wide process is larger, different types
of data can be obtained, sampling rates of process variables
are always different from each other, and the density of the
collected data from the plant-wide process may be quite low.
Finally, in [77], Wollschlaeger et al., rather than presenting
a concrete architecture, are providing the future I4.0 archi-
tectural insights, based on current designs and future trends,
focusing on TSN and 5G designs. Although their analysis
includes different vertical integration layers (which enable
ubiquitous data presence), it seems that the data coordination
and the relevant computations are considered centralized, for
the sake of ultra-high reliability.

V. DATA ASPECTS OF I4.0 TECHNOLOGIES AND
SERVICES
In this section, we provide a holistic outline of the latest
I4.0 data enabling technologies and data-centric services,
that were identified through the exhaustive state of the art
research, spanning all the way from the field level deep
in the physical deployments up to the cloud level. Fig. 2
visually displays the partitioning of the networked industrial
environment building blocks in two fundamental planes: data
enabling industrial technologies and data centric industrial
services. It is visible that each building block can have the-
matic and functional overlaps with other building blocks that
lie in its proximity. This is natural, and is due to the interplay
between current technologies and services. The articles that
we have identified and present are displayed in Fig. 7. In fact,
the information presented in Fig. 7 provides a concise classi-
fication in the two categories of the recent research works.

A. DATA ENABLING INDUSTRIAL TECHNOLOGIES
1) IIOT / ICPS
An ICPS is a system which integrates its IIoT-enabled hard-
ware function with a cyber representation acting as a vir-
tual representation for the physical part. IIoT/ICPS com-
bine two worlds: embedded systems, exhibiting real-time and
strictly deterministic behavior; and virtual systems, exhibit-
ing probabilistic and optimized behavior without firm time
constraints [101]. This composition extends to industrial net-
worked environments which are comprised of the physical
part, which performs the physical processes, and networks
of IIoT devices, which perform the computational processes
required to control the physical ones. There are multiple
data-related key challenges which are presented in the col-
lection of papers below. Indicatively, they include but are not
limited to interoperability of the different wireless and wired
data sharing technologies and standards as well as seamless
data exchange, energy efficient operation (due to the presence
of resource-constrained devices), adaptive fault management,
and accurate network reconfigurations.

The cyber part of an IIoT/ICPS system is constituted
by computational processes, which receive data from the
physical processes, calculate the required outputs and apply
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FIGURE 7. Taxonomy of I4.0 data management enablers.

them to the physical plant [124], providing and using,
at the same time, data accessing and data processing ser-
vices available on the Internet [126]. Due to the fact that
production scheduling is optimized using objective func-
tions based on punctuality criteria such as earliness and
tardiness [123], significant part of those computations are

taking place at the edge of the IIoT deployments, trans-
forming edge computing in a fundamental type of computa-
tion, with contributions ranging from adaptive transmission
optimization [115] to multiple gateway optimization [116].
Additionally, different IIoT deployments usually incorpo-
rate different communication and networking alternatives,
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such as WirelessHART [111], RPL [132] and 6TiSCH [112],
as well as frequent protocol conversions [109], opera-
tions which have to seamlessly exchange data with each
other. Consequently IIoT and ICPS technologies enable
intelligent, adaptive control with seamless vertical, hor-
izontal and dynamic data exchange between heteroge-
neous platforms and networks, through an exhaustive use
of data exchange, coordination and collaboration [125],
as well as through recently proposed techniques like
network slicing [120]. Important ICPS operations include
fault management [127], clustering analytics [128], reusable
software [129], as well as reactive test case generation [130]
and modular reconfiguration [131]. Typical IIoT applications
include predictivemaintenance [106], where a successful net-
work configuration is able to determine the condition of the
in-service equipment in order to estimate when maintenance
should be performed, real-time RFID monitoring [102], for
tracking products in the assembly line. Other research
issues include IIoT topology optimization [103], packet
scheduling [108], and IIoT network construction and oper-
ation under massive multiple-input multiple-output M2M
communication [119].

There have been some interesting recent data related
advancements in the IIoT domain. In [104], Qi et al. identify
the need for data access control along the supply chain,
especially when it comes to product data related to sen-
sitive business issues, and they design a scalable industry
data access control system that addresses these limitations.
In [107], Meng et al. present an industrial data exchange
mechanism based on ZeroMQ for the ubiquitous data access
in rich sensing pervasive industrial applications. This investi-
gation highlights the major concerns in building a distributed
industrial data system in a systematic manner. In [110], iden-
tify that most of the current data clustering techniques that
could only deal with static data become infeasible to cluster
the significant volume of data in the dynamic industrial appli-
cations, and introduce an incremental clustering algorithm
by fast finding and searching of density peaks based on k-
mediods, as a way to find the underlying pattern structures
embedded in unlabeled data. Driven by the pursuit of green
communication, Duan et al. [122] present a space reserved
cooperative data caching scheme for IIoT, where the cache
space in a base station is divided into two parts, one is
used to store the prefetched data from the servers ahead of
the device request time and the other is reserved to store
the temporarily buffering data in the wireless transmission
queue at the device request time. Timely data delivery is also
another crucial data management issue in IIoT, and has been
frequently combined with the optimization of other important
metrics. For example, in [118], Esposito et al. provide a loss
tolerant data delivery scheme with low energy consumption
and end-to-end guarantees. In [133], Raptis et al. present a
method for identifying and selecting a limited set of proxies
in the IIoT network where data needed by the consumer nodes
can be cached, so as to guarantee timely data access. In [121]
they combine it with MAC layer improvements, in [117] with

incremental time-triggered data flows, and in [105] with a
fusion of relaying and data aggregation at the source nodes.
Regarding this, there are multiple open challenges to address,
such as security concerns (the specific case of DDoS mitiga-
tion was addressed in [114]), and estimation accuracy [113].

2) WSAN
WSANs are defined as a group of spatially dispersed
and dedicated sensors and actuators for indoor [141] and
outdoor [137] monitoring and recording of the physical con-
ditions of the industrial environment. WSAN cooperatively
deliver the collected data at a central location via single-hop
or multi-hop communication [156]. WSANs measure envi-
ronmental conditions like temperature, sound, pollution lev-
els, humidity, and so on. In fact,WSANs are the base to estab-
lish a supervisory control and data acquisition systemwith the
benefits of extending the network boundaries and enhancing
the network scalability of the industrial environments [157].
In the scope of this article, the difference between WSAN
and IIoT lies on the fact that a WSAN consists of a network
of only wireless sensors (and, in some cases, small actuators),
usually performing a monitoring (and, in some cases, actua-
tion) task in a mesh network topology. If the network was to
include a wired sensor, it could no longer be labeled aWSAN.
Also, essentially, in an IIoT system, the devices are able to
directly share the generated data via Internet, where a server
can process the data and it can be interpreted on a front-end
interface. Conversely, for a WSAN, there is no direct con-
nection to the Internet. Instead, the various sensors connect
to a central network controller, which can then share the data
as it sees fit. That being said, an IIoT system can utilize a
WSAN by communicating with its router to gain access to
generated data. Recent research interest in the data-driven
industrial WSAN literature has been focused on a number
of emerging challenges. Typical challenges are discussed
below and include localization, reliable data communication,
cooperative data relaying and routing, neighbor discovery as
well as clustering and isolation avoidance, and data driven
learning.

Localization achieved by using the available plant data
in WSAN-enabled industrial environments is one of the
problems addressed, both in terms of finding the opti-
mal placement sensor locations in the industrial space
(with Delaunay triangulations [135] or particle swarm
optimizations [155]) and of managing to effectively local-
ize mobile robots [148]. The industrial environment that
the WSANs operate in is very challenging because of
dust, heat, water, electromagnetic interference, and inter-
ference from other wireless devices, which make it dif-
ficult for current WSANs to guarantee reliable real-time
communication. For this reason several communication
oriented performance improvements have been achieved.
Such improvements include reliable communication slot
assignment [134], autonomous channel switching for spec-
trum sharing [136], synchronization for nodes with impre-
cise timers [144], and real-time link quality estimation [150].
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Cooperative data relaying schemes also facilitate secure and
interference-free data management, with recent approaches
employing fountain-coding aided transmissions [138] and
belief function based cooperation [140]. Other interest-
ing identified data-driven problems for industrial WSANs
include neighbor discovery with mobile nodes based on dis-
tributed topology data [147], network isolation avoidance
based on local energy data [151], distributed node cluster-
ing based on (among others) node similarity data [145],
and coverage data hole healing [154]. Data routing improve-
ments are also traditionally a core research aspect, recently
with approaches targeting network stability based on nodal
data [149], and reliable, SNR-assured, anti-jamming data
transfers [153]. Cross-layer optimization frameworks have
also been proposed for this technological enabler, with
SchedEx-GA [139] (spanning MAC layer and network layer)
attempting to identify a network configuration that fulfills
all application-specific process requirements over a topology,
and CLOC [143], attempting at maximizing the minimum
resource redundancy of the network under system stability
and schedulability constraints. Last but not least, data-driven
learning with sensing data [142], delay and energy improve-
ments with empirical data [146], [152] have also emerged as
important research directions, especially with the introduc-
tion of local clouds in the production process.

3) NCS
NCS are control systems wherein the control loops are closed
through a communication network. An NCS uses a network
as a communication medium to connect the plant to a central
controller [159]. The defining feature of an NCS is that con-
trol data and feedback data are exchanged among the system’s
components in the form of data through a network. The most
important feature of NCS is that they connect cyberspace
to physical space enabling the execution of several tasks
from long distance. In addition, networked control systems
eliminate unnecessary wiring reducing the complexity and
the overall cost in designing and implementing the control
systems. They can also be easily modified or upgraded by
adding sensors, actuators. Usual types of such network com-
munication are fieldbuses like CAN and LON, wired con-
nections like IP/Ethernet, etc. Typical challenges for NCS
include verification of access control, efficient data-driven
network control, data delivery latency reduction, and data
delay compensation.

Automated or semiautomated verification of access control
is a necessary building block in NCS [158], and sampled-data
control has been proven to guarantee their synchronization
by reducing the updating frequency of the controller and the
network communication burden [167]. Due to the difficulty
in observing the full relationship among numerous NCS
components, high-dimensional and sparsematrices describ-
ing partial relationships among them have been recently
introduced [165]. NCS can also be used to connect different
plants with solutions provided to achieve given specifica-
tions when there are communication delays and losses in

communication networks linking central network controllers
and the plants [160]. Data-driven network control is known
to be one of the most efficient control schemes for complex
industrial processes due to the difficulty in obtaining accu-
rate mathematical control models [161] and to the frequent
existence of nonlinearities and stochastic disturbances [162].
In fact, data delivery latency is among the most active topics
in the NCS field recently. Networked degradations such as
data delivery delay and data dropout can nevertheless cause
NCS to fail to satisfy performance requirements, and eventu-
ally affect the overall reliability [164]. In order to address this
problem, NCS can be specified in the form of function blocks
through relevant standards such as the IEC 61499 standard,
the end-to-end data delivery latency over switched Ethernet of
which can be assessed with low complexity techniques [163].
Also, delay compensation schemes for NCS using CAN
bus [166], as well as energy efficient sampling methods [168]
have been presented.

4) INDUSTRIAL ROBOTS
Robot systems have been widely used in industry and also
play an important role in human social life [195]. Industrial
robot research can be classified in two categories, station-
ary robots and mobile robots. Usually, stationary robots are
implemented are robotic (bi-)manipulators, devices used to
manipulate materials without direct contact. In industrial
environments a manipulator is an assisting device used to
help workers process, lift, maneuver and place objects that
are too heavy, too hot, too large or otherwise too difficult for
a single worker to manually handle or process. As opposed
to simply vertical lift assists (cranes, hoists, etc.) manipula-
tors have the ability to reach in to tight spaces and remove
workpieces. Mobile robots are typically also capable of loco-
motion. In industrial environments they can be autonomous,
capable of navigating an uncontrolled environment without
the need for physical or electromechanical guidance devices.
The main challenges of each category are displayed in Fig. 8.
Stationary robot research focuses mainly on fine-grained and
accurate tracking control and correction, as well as efficient
robot collaboration. Mobile robot research naturally focuses
on a broader variety of challenges, including robot localiza-
tion, navigation, and collaboration.

Tracking control of robot manipulators is a fundamental
and significant problem in robotic industry [197]. Track-
ing control of robotic manipulators with uncertain kine-
matics and dynamics (gravitational torque, friction torque,
moment of inertia and disturbance) is addressed using
data-driven observer-based control designs [180], some of
which providing convergence of tracking errors [181]. Pre-
planned path tracking corrections of robotic [170] or teleop-
erated manipulators [173] can be achieved through iterative
learning control algorithms. Smaller robotic parts of larger
potential constructs can be controlled distributively through
redundant actuation (an example is provided in [176], for
a tracking control of a joint). Energy and power efficient
methods have also been presented, for a number of cost
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FIGURE 8. Industrial robots: An I4.0 data enabling technology.

functions [186]. Manipulability optimization of redundant
manipulators is shown to be achieved through dynamic neural
networks [188]. Neural control is also applied in the case of
bimanual robots (which are able to perform more compli-
cated tasks that a single manipulator), resulting in guaranteed
stability and precision [190], or in reduced vibrations [192].
Data delivery delay is also an important aspect, subject
to minimization, shown to be decreased with practical and
adaptive time-delay control schemes [196]. Coordination and
cooperation control for networked mobile manipulators over
a jointly connected topology with time delays is another
topic that needs fast data delivery in the network [185].
Modular design has been proven helpful in the configu-
ration of multirobot cooperation (for example in [193] for
sewing personalized stent grafts). Localization of mobile
robots in industrial environments is a classic topic that will
remain challenging in the I4.0 era. Mobile robots operat-
ing in indoor environments [175] can be localized with a
combination of data coming from heterogeneous sensors,
and those operating in outdoor environments [178], with a
combination of ambient data (movement dynamics, veloc-
ity data, RSSI) High-precision probabilistic localization of
mobile robotic fish can be achieved using visual and iner-
tial cues [171]. Robot navigation in space is another major
topic for data-driven research. Online navigation of humanoid
robots has been proven feasible through multi-objective evo-
lutionary approaches [172].Wall-following trajectory control
of hexapod robots can be realized via data-driven fuzzy con-
trol learned through differential evolution [174] and relevant
uncertainties can be addressed with decentralizing this con-
trol with dynamic controllers [177]. Homing (mobile robot

returns back to a reference home position) using just the
visual information can be implemented by extracting coarse
location data with respect to the reference position using
a bit encoding algorithms [179]. Autonomous exploration
using mobile climbing robot allow dangerous tasks to be
completed more quickly and more safely than is possible
with human inspectors [187]. Wireless charging helps mobile
robot to become more and more autonomous and navi-
gate easier [194]. Except for navigation, several approaches
regarding other robot properties have been presented, such as
balancing and velocity control [169] with in-wheel motors,
human behavior transfer to robots through learning by
imitation/demonstration [189] and visual servo regulation
with simultaneous depth identification [198]. Robot collab-
oration and data sharing is also an emerging interesting
research issue. Teleoperation control frameworks for multiple
coordinated mobile robots through have been proposed using
a brain-machine interface [183]. A particularly interesting
topic in the mobile robots collaboration field field is the
collaborative and adaptive data sharing. Collaborative robots
are multirobot systems working together for the same indus-
trial task such as robotic assembling. To achieve an efficient
collaboration, robots require not only locally sensing the envi-
ronmental data but also immediately sharing these data with
neighbors. However, there exists a dilemma between the large
amount of sensory data and the limited wireless bandwidth.
The relevant problem of throughput maximization of sensory
data sharing in collaborative robots has been studied in [182].
Another interesting topic which again necessitates distributed
data exchange is the consensus problem. The consensus prob-
lem has experienced a fair amount of research interest, aiming
at forcing a group of mobile robots to reach an agreement on a
quantity of interest such as the rendezvous position, velocity,
and heading direction [184]. Multiple robots can also collab-
oratively achieve a common coverage goal efficiently, which
can improve work capacity, share coverage tasks, and reduce
completion time [191].

5) ASSEMBLY LINE
An assembly line is a manufacturing process in which (usu-
ally interchangeable) parts are added as the semi-finished
assembly moves from workstation to workstation where the
parts are added in sequence until the final assembly is pro-
duced.The assembly process is composed of several data
intensive stages, namely, resource identification, resource
recognition, data collection, data transmission, data min-
ing, and feedback control [218]. Flexibility is critical for
manufacturing firms to respond to demand uncertainty and
achieve product customization. For example, in automotive
plants, vehicles with multiple styles, models, and options
can be made on the same production line. Similarly, com-
puters with different configurations are assembled on the
same line as well [212]. Similar observations are found
in many other manufacturing systems, such as appliances,
electronics, furniture, food, and are usually described by
model-based processes [205]. However, replacing a resource
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or introducing a new product variant often requires manual
integration work and considerable downtime. For this reason,
automated systems for manufacturing need to adapt increas-
ingly fast to the introduction of new resources [206]. Data is
already playing a crucial role in customized manufacturing,
as advanced systems are needed that analyze the assembly
and use the plethora of data available at the shopfloor to
generate highly flexible assembly sequences. Specific chal-
lenges include real-time data operations, data-based monitor-
ing, automation control and automatic adaptation.

In order to increase the requested flexibility and boost
the data availability in the production process, assembly
lines are being evolved and are featuring new technological
improvements. Some fundamental data-enabling advance-
ments for the modern assembly lined include: Sensor data
acquisition systems producing large amounts of small vol-
ume data [216], (3D) CAD/CAM systems and models pro-
ducing considerable amounts of large volume data [208],
simulation-based systems [226] for rearranging manufactur-
ing facilities targeting material handling and costs mini-
mization producing complex mathematical data [215], digital
twins of physical products producing assembly orchestration
data [222], as well as integrated ICPS producing coupled
cyber-physical data [219]. In [202], the authors introduce a
knowledge-based approach exploiting distributed declara-
tive data and cloud computing and target data and software
exchange and reuse, maximizing the potential to facilitate
new business models for industrial solutions. Real-time data
operations for flexible manufacturing are becoming increas-
ingly popular, are now in the core of the production process
and are using different kinds of data. Real-time performance
assessment of manufacturing systems by monitoring contin-
uous and discrete variables of different machines is based
on data extracted from factory machines [224]. Real-time
monitoring of the production process is based on data (fea-
tures) extraction and selection (for example, high-power
disk laser welding in [225], with fifteen features extracted).
Real-time production exception diagnosis is based on sensor
data streams [213]. Real-time geometrical re-definitions of
products in the assembly line are based on 3D data from
CAD systems andmodels [221]. The same holds for real-time
capturing, structuring and assessing the design rationale of
product design [211]. Real-time coded aperture techniques
targeting the alignment process for industrial machinery pro-
ducing high resolution image data [201]. Some specialized
recent contribution on assembly line improvements include
the following. In [200], Zhang et al. argue that the diversity
and uncertainty of data over the dimension, damage degree
and remaining life characteristics of used parts make the
remanufacturing process route decision more complicated,
and they propose a model for finding the optimal reman-
ufacturing route. Due to similar uncertainties of complex
mechanical products, Wang et al. [204] suggest an assem-
bly quality adaptive control system, in order to improve
the products’ assembly precision, stability and efficiency.
In [203], Bruun et al. adopt a visual product architecture

representation in combination with a PLM system data to
support the development of a family of products. In [199],
Tomar et al. introduce an efficient automation and control for
a particular type of industry, the conventional cable manu-
facturing industry, a conventional stranding plant of which
takes up approximately 300-400 m2 of space. Last but not
least, taking into account that the practice of kitting (to supply
the required parts for a single assembly in pre-set containers)
provides an alternative to the currently dominant practice of
continuous supply line-stocking, Khajavi et al. [227] analyze
the value of model-based kitting for additive manufacturing.
Several theoretical frameworks have also been proposed.
Industrial machines using probabilistic Boolean networks
enable the study of the relationship between machine com-
ponents, their reliability and function [223]. Manufacturing
systems with batches and duplications can be effectively
modeled by timed event graphs and then studied using alge-
braic tools [220]. Time-varying properties of industrial pro-
cesses can also be seen as data-driven, autoregressive models
and be estimated with relevant recursive algorithms [214].
Improvements of key features of product manufacturing
can be realized via weighted-coupled network-based qual-
ity control methods [209]. Petri nets modeling can augment
the performance of event driven systems like intelligent
part dispatching using temporal data [207]. Integrated pro-
cess planning and system configuration for machining on
rotary transfer machines can be effectively realized through
the employment of sophisticated optimization tools [217].
Finally, automatic adaptation of assembly models can be
modeled with attributed kinematic graphs [210].

6) M2M COMMUNICATION
Industrial M2M communication refer to direct communica-
tion between industrial networked devices using any commu-
nications channel, including wired and wireless. Emerging
smart factories are envisioned to be seamlessly integrated
with diverse communication technologies. Consequently,
production, networking, and communication will become
tightly integrated. Cooperation among different sites of a fac-
tory or even different factories will be easily possible [238].
The research emphasis on this technological enabler is put
less on the large scale network optimization aspects (which
are investigated in the rest of the technological enablers) and
more on the device to device communication links, chan-
nels, transmissions and one hop data exchanges. The exact
emerging challenges range from the lower technological
level of circuit network model design [230], up to the higher
technological levels of antenna design [249], filtering [253],
multiplexing [255], interference management [241] and
others.

Particular attention has been paid on guaranteeing the
QoS of the subsequent data delivery over the communica-
tion media, through various methods, such as function split-
ting between delay-constrained data delivery and resource
allocation [233], redundant communication schemes [251],
or precise communication and network modeling [245].
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Optical communications have also started penetrating the
industrial sector, especially for moderate and high data rates
with enhanced security (due to the spatial confinement of
optical links) for both short [231] and longer ranges [258],
however their full potential remains to be unlocked, as the
cost of optical equipment is still high [260]. The M2M
Communication configuration has a direct impact on the
efficiency of the industrial network data management, and
especially on specific sensitive data-related metrics. Those
metrics are fundamental operatives of the I4.0 and are guar-
anteeing the smooth function of resource-intensive industrial
applications. Some indicative examples where the impact of
communication scheme is highly beneficial are the follow-
ing: self-triggered sampling schemes for NCS targeting low
data losses and delays [234], statistical dependences manage-
ment in channel gains of industrial WSAN targeting efficient
data routing [235], phase-sensitive sensing and communica-
tion targeting safety-critical data distribution [262], mmW
deployments targeting large number of data hops [248],
field-oriented network control decoupling targeting effective
machine operation [244], and optimized cooperative multiple
access techniques targeting efficient resource sharing [259].
A useful standardized recent data enabling communication
mechanism is a recent extension of IEEE 802.15.4. Sev-
eral studies have highlighted that the IEEE 802.15.4 com-
munication standard presents a number of limitations such
as low reliability, unbounded packet delays and no pro-
tection against interference, that prevent its adoption in
applications with stringent requirements in terms of data
reliability and latency [33]. For this reason, IEEE has
released the 802.15.4e amendment that introduces a number
of enhancements to the MAC layer of the original stan-
dard in order to overcome such limitations. Following this
release, there is a constant flow of research on improving
various aspects of the amendment. This part of research
includes a great number of works on the M2M commu-
nication technological enabler, and more specifically con-
centrated on three of the main 802.15.4e MAC operation
modes, Time Slotted Channel Hopping (TSCH), Determin-
istic and Synchronous Multi-channel Extension (DSME)
and Low Latency Deterministic Network (LLDN) (for
more details on the functions of those modes, the reader
can consult [33]). Regarding the TSCH mode, the main
research focus has been recently placed on synchroniza-
tion, with some techniques using learning and prediction
data from neighboring nodes [229], and other techniques
using mutual synchronization of distributed nodes [243],
as well as on fast network joining algorithms [256]. Regard-
ing the DSME mode, improved network formation has been
studied in [250]. Regarding the LLDN mode, significant
efforts have been invested in transforming the standard com-
patible for ultra-low latency applications, where the crit-
ical data need to be delivered with high reliability [239].
Another widely used data enabling technology used for
data management in industrial environments is the IEEE
802.11 WLAN and its various amendments. The IEEE

TABLE 4. Standardized data enabling communication technologies.

802.11 standard revealed effective since it is able to provide
satisfactory performance for several industrial applications
in which tight requirements in terms of both timeliness and
reliability are encountered [236]. Specifically, the possibil-
ity of implementing ad hoc data management schemes as
well as infrastructure configurations, renders it very con-
venient. Here the emphasis is put on several important
aspects. The first aspect is seamless redundancy to improve
reliability through reference architectures [261], experimen-
tal campaigns [247] and joint interference prevention [257].
The second aspect concerns soft real-time control applica-
tions where the relevant constraints are met through efficient
bandwidth management [242], as well as enhanced com-
munication determinism [246]. The third aspect is dynamic
rate selection algorithms, where data is delivered within the
deadlines, while transmission error is minimized [240]. Other
data enabling communication technologies include: CAN
with jitterless communication via stuff bits prevention [228],
OPC-UA with enhanced throughput increased via RESTful
architecting [237], [263], EtherCAT with very short cycle
times via priority-driven swapping-based scheduling of ape-
riodic real-time data [232], ISA100.11a with increased reli-
ability via adaptive channel diversity [254], WIrelessHART
for harsh industrial environments [252]. Table 4 displays an
overview of selected articles regarding specific communica-
tion technologies.

B. DATA CENTRIC INDUSTRIAL SERVICES
1) AR / VR
Augmented reality (AR) is an interactive experience of a
real-world environment where the objects that reside in the
real-world are enhanced by computer-generated perceptual
information, sometimes across multiple sensory modalities.
Virtual reality (VR) is an experience taking place within a
computer generated reality of immersive environments can
be similar to or completely different from the real world.
Typically, AR andVR services require large volumes of video
data which are processed centrally with high computational
overhead. In [264], the authors introduce a context-aware
augmented reality assisted maintenance system, in which
industrial users can add and arrange various contents spa-
tially, for example, texts, images and CADmodels, and spec-
ify the logical relationships between the AR contents and
the maintenance contexts. The data in this system are stored
in a context database of the context management module.
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A context sensing module acquires raw data from the users
and various physical sensors in the environment, and inter-
prets the raw data to obtain low-level contexts. The sensor
interpreter obtains and interprets data from the physical sen-
sors. For example, it processes the raw images captured by
the cameras, and outputs the marker ID and transformation
matrix. The data processing is conducted offline on large
volumes of acquired data. In [265], the authors apply AR
technologies for the improvement of occupational safety in
industrial environments. The application is installed on work-
ers’ mobile devices that are used as the input and output
of the system. All the necessary data are stored in a cen-
tral database that is accessed by the application whenever
required. The system is personalized according to skills of
a worker by taking into account his professional training
and work experience. Depending on that it is determined the
amount of data to be displayed to a worker helping even
less skilled workers to perform a task. Therefore, in this case
although the data presence is localized, the data processing is
distributed.

2) CAMERA / VISION
There have been some works which use camera and vision
technologies for efficient pattern recognition, fault estima-
tion and template matching. In [266], Jiang et al. develop
a data-driven decoupling feedforward control scheme with
iterative tuning to meet the challenge of the crosstalk problem
inMIMOmotion control systems. This scheme is data-driven
in the sense that, unlike typical model-based approaches of
this field, it uses an iterative tuning which uses the avail-
able data to overcome the practical obstacles in obtaining
an accurate dynamic model. The authors show that through
the beneficial use of data and with only one measurement
data collection, the decoupling control scheme can reduce
the effect of the crosstalk with a decrease of two orders of
magnitude (10−8 → 10−10). In [267], Chen et al. present
two estimator designs for WSANs in multi-target tracking
under signal transmission faults due to the uncertainties in
the surrounding environmental conditions. In [268], Shih and
Yu describe a model-based template matching system, which
is robust to undergo rotation and scaling variations. The data
used as input in the system are comprised of image data, and,
in fact, the authors test the system with different categories of
image data, through three diverse datasets: logos and badges,
image patches, and PCB components.

3) PROGNOSTICS
Prognostics is an engineering discipline focused on predict-
ing the time at which a system or a component will no
longer perform its intended function. Prognostics engineers
face various situations regarding collected data from the
past, present, or future behavior, and have to come up with
efficient data-driven solutions. Generally, the modeling of
data-driven prognostics has to go through necessary steps
of learning and testing. First, raw data are collected from
machinery and are preprocessed to extract useful features

to learn degradation behavior. Second, in the test phase,
the learned model is used to predict future behavior and
to validate model performance. An example of prognostics
operations in industrial environments is systems health man-
agement, an enabling discipline that uses sensors to assess
the health of systems, diagnoses anomalous behavior, and
predicts the remaining useful performance over the life of
the asset [274]. In [269], Javed et al. present a new approach
for feature extraction based on vibration data, targeting accu-
rate prognostics for machinery health monitoring. The main
breakthrough of the paper is the mapping of raw vibration
data into monotonic features with early trends, which can be
easily predicted. The data collection and processing is con-
centrated on central computation entities. The contribution is
naturally data-driven and the authors strive for a good balance
between model accuracy and complexity. Prognostics also
present a widespread application in network-based industrial
processes, with [270], where combined fault-tolerant and pre-
dictive control is introduced and [273], where a weighted lin-
ear dynamic system for nonlinear dynamic feature extraction
is proposed. In those works, the authors try to identify the
considerable redundancy and the strong correlations between
data as well as to manage the random noises present at data.
Other interesting data-driven industrial prognostics applica-
tions include [271], which presents an extended prediction
self-adaptive controller employing graphical programming of
industrial devices for controlling fast processes, and [272],
which investigates fault prediction of power converters in
industrial power conversion systems.

4) ANOMALIES DETECTION
Anomalies detection is the identification of rare items, events
or observations which raise suspicions by differing signifi-
cantly from the majority of the data. Considering the aspect
of data management, current anomalies detection approaches
are either centralized and complicated or restricted due to
strict assumptions, a fact that renders them difficult to apply
on practical large scale networked industrial systems. The
accommodation of high rates of data capture and total data
volume generated by complex WSANs that typically mon-
itor industrial systems pose one of the main challenges
for online anomalies detection. The paper [277] outlines
such centralized data-driven systems for anomalies detection
for ICPS using several use cases from industry. Based on
data, these systems extract most necessary knowledge about
the diagnosis task. Another ICPS-enabled work is [279],
in which the authors present an anomaly detection approach
for ICPS based on zone partitioning. Additionally, in [278],
an online two-dimensional changepoint detection algorithm
for sensor-based anomalies detection is proposed. Interest-
ingly enough, in [275], the authors introduce a distributed
general anomaly detection scheme, which uses graph the-
ory and exploits spatiotemporal correlations of physical pro-
cesses to carry out real-time anomaly detection for large
scale networked industrial sensing systems. Finally, in [276],
a work of different flavor, the authors display the concept of
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early problem identification in collaborative engineering with
different product data modeling standards.

5) FAULT DIAGNOSIS
Fault diagnosis is the identification of the nature and cause
of a certain abnormal phenomenon or malfunction in a given
industrial system. Fault detection, isolation and reconstruc-
tion methods are essential to improve the reliability, safety of
the automatic control systems. In [280], Lei et al. develop a
model-based fault location method is developed for intermit-
tent connection problems on controller area networks. In this
type of networks time critical data are transmitted, hence,
the reliability of the network not only has a direct impact
on the system performance but also affects the safety of the
system operations. In [281], Choi et al. introduce a condition
monitoring and fault diagnosis scheme of electric motors for
harsh industrial applications. The authors also note that for a
real implementation in industry, since the proposed scheme
assumes prior knowledge of various data in a motor current
spectrum, small additional memory might be required to
implement the proposed method. Also sufficient bandwidth
of data acquisition is required, particularly for high-frequency
signal detection. In [282], Chiodo and Lauria discuss some
basic properties of the failure rate of redundant reliability sys-
tems in industrial electronics applications. They note that the
the problem of reliability evaluation of the single components
is data related and is not an easy matter, and this is exactly
in view of the scarcity of failure data. In [283], Zhou et al.
design a fault isolation technique based on the k-nearest
neighbor rule for industrial processes. A notable data related
remark on this paper is that the technique focuses on the prob-
lem of isolating sensor faults only based on the normal data,
without any fault information. In [284], a reconstruction-
based method is proposed to monitor nonlinear industrial
processes and isolate their fault types. This method includes
numerous data operations (such as normal data decomposi-
tion and faulty data decomposition), and In the experimental
section, monitoring data of an electro-fusedmagnesia furnace
is used to show its effectiveness. In [285], Zhang et al. suggest
a component analysis algorithm for fault monitoring in indus-
trial processes, and in [286] a threshold-free error detection
scheme for WSANs. Various data oriented techniques are
used by the authors, such as exploitation of the information
related to the spatial and temporal relationships among sensor
data streams, data correlations and mapping of residual data
streams.

6) MULTI-AGENT SYSTEMS
Multi-agent system are computerized systems composed
of multiple interacting intelligent agents. Intelligent agents
are autonomous entities which act, directing their activity
towards achieving goals upon an environment using observa-
tions through sensors and consequent actuators. Multi-agent
systems can solve problems that are difficult or impos-
sible for an individual agent or a monolithic system to
solve. They have been presented as a suitable service to

develop modular, flexible, robust, and adaptive large-scale
production lines. However, the classical multi-agent systems
are defined by a static hierarchy of data structures, which
makes them very difficult to modify [288]. For example,
in [289], Papakostas et al. present a software platform struc-
tured around a central data repository, containing engineer-
ing data and information from ongoing and completed line
design projects. The central data repository is used by soft-
ware agents that allowed the seamless update and use of
engineering data. Also, in [290], Tang et al. investigate the
tracking control problem of networked multi-agent systems
centrally with multiple delays and new characterizations of
impulses. Many of the recent works focus on the decen-
tralization of industrial functions and data distribution over
a community of distributed, autonomous, and cooperative
agents. The application of distributed agent data and services
allows the achievement of important features, namely mod-
ularity, flexibility, robustness, adaptability, reconfigurability,
and responsiveness [294]. Some recent ones are the follow-
ing. In [287], Leitão et al. develop a multi-agent system for
process and quality control in a laundry washing machines
factory. They construct an agentification of the factory’s pro-
duction line and distribute the various types of data among
different kinds of agents. In [291], Zhang et al. model manu-
facturing machines as agents, which can collect production
data and distributively control the machines. Giving them
self-organization capability, machines can be reconfigured
for different tasks to achieve the highest resource efficiency.
Manufacturing processes are monitored and adjusted by the
self-adaptive model when exceptions occur. In [292], Sturs-
berg andHillmann propose themodeling and synthesis proce-
dures to obtain optimal decentralized industrial controllers in
state-feedback form for distributed agents. Reference [293],
presents a multi-agent method for industrial process inte-
gration implementing coordination optimization mechanisms
that enable distributed agent data exchanges, by using cultural
algorithms. In [295], Blunck et al. introduce non-cooperative
agents which make decisions based on the capacity allocation
and the data of all other agents, thus creating a decentralized
feedback loop.

7) DECISION MAKING
The integration of ubiquitous sensing capabilities of IIoTwith
the industrial infrastructure of I4.0 can enable the automation
of the decision making process inside and outside the shop-
floor. The data collected by IIoT systems in smart indus-
tries can be used to replace manual employee evaluation
systems where there are ample chances of bias. In [297],
Wang et al. develop a large-scale data-driven multitask learn-
ing and decision-making system, which can quickly coordi-
nate machine actions online for large-scale custom manufac-
turing tasks. In [298], Wang et al. present a self-organized
system with data based feedback, coordination and improved
decision making ability. In [296], Kaur and Sood propose a
model for automated performance evaluation of employees
in a smart industry. The model uses the data collected by
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TABLE 5. Data-driven machine learning services for data enabling technologies.

embedded sensors in smart industrial system to identify
various industrial activities of employees. The identified
activities are then classified as positive, negative and neutral
activities. Here the word ‘‘decision’’ refers to the action taken
in response to the performance of employees. The proposed
model consists of an IIoT network, an information processing
system and a central database system. The data collected
by the IIoT network are stored in the database and used
by the information processing system to infer the useful
requested results. Another interesting data enabling entity
in this paper is the data conversion block, which is used to
classify a particular activity into positive, negative or neutral
and to calculate the amount of profit or loss corresponding to
positive or negative activity respectively. Finally, a decision
making block is automatizing the decision making process
using game theoretical tools.

8) JOB SCHEDULING
Job scheduling has been traditionally considered as a
core field in the manufacturing research area. The field
spans from the single machine scheduling problem which
is the simplest type of industrial scheduling problem,
to multiple machine scheduling, and even multiple assem-
bly lines scheduling or even inter-factory job scheduling.
Examples of single machine scheduling are [299], where
nested partitioning-based integration of process planning
and scheduling in flexible manufacturing environment is
introduced, [304], where the authors study the singlemachine
scheduling problem with deadlines where the processing
times are described by uncertain variables with known uncer-
tainty distributions, and [301], where the recovery policy of
job-shop manufacturing systems is evaluated. Also in [302],
Sorouri et al. propose a software composition method for
automated machines that exploits their mechatronic modu-
larity, and they demonstrate that desired behavior of a certain
class of machines can be composed of behaviors of its mecha-
tronic components, including fully decentralized scheduling
and operation control. Multiple machine job scheduling has
been presented in [300], where Wang and Zhou address the
problem of scheduling multi-robot cells with residency con-
straints and multiple part types, in [305], where Huang and
Wu consider the serial batching scheduling problem in which

a group of machines can process multiple jobs continuously
to reduce the processing times of the second and subsequent
jobs, and in [306], where the authors study a two-machine
scheduling problem in fuzzy environments. Multiple assem-
bly lined scheduling is presented in [307], where Du et al.
investigate robust order scheduling problems in the fashion
industry by considering the preproduction events and the
uncertainties in the daily production quantity. Inter factory
scheduling is presented in [303], where production plan-
ning with remanufacturing and back-ordering is discussed,
in which there are multiple factories in a cooperative rela-
tionship to produce new or remanufactured products.

9) MACHINE LEARNING
Machine learning services are by definition data-driven and
are used on top of the technological enablers in order to
further enhance industrial applications. An outline of the
recent industrial machine learning services and the corre-
sponding technical methods used is displayed in Table 5. For
the IIoT technologies, emphasis has been put on data-driven
schemes for predicting the missing QoS values for the IIoT
based on kernel least mean square algorithms [308] and on
intelligent IIoT traffic classification using search strategies
for fast-based-correlation feature selection [316]. WSANs
benefit from the exposition of features for sensing that pro-
vide high-accuracy measurements for reducing the required
manufacturing precision (capacitive displacement sensing
in [311]). Machine learning is also beneficial for industrial
robot enablers, for example with iterative learning procedures
with reinforcement for high-accuracy force tracking in robo-
tized tasks [317]. Applications in the assembly line focus
on process modeling and include data-based methods for
automatically selecting optimal operational indices for unit
processes in an industrial plant using measured data (with-
out knowing dynamical models of the unit process) [309],
data-driven approaches for nonlinear process monitoring
under the framework of locally weighted learning [310],
using radial basis function networks [319], as well as adap-
tive process monitoring and fault diagnosis through recursive
slow feature analysis [320]. Data classification is an active
research problem in the industrial data mining and machine
learning communities and spreads horizontally over all
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technological enablers [312]. Deep learning, as one of the
most important tools of current industrial computational
intelligence, achieves high performance in predicting numer-
ous parameters and attributes of industrial applications. How-
ever, it is a nontrivial task to train a deep learning model
efficiently since the deep learning model often includes a
great number of parameters. In [313], Zhang et al. intro-
duce an efficient deep learning model to predict cloud vir-
tual machines workload for industrial NCS deployments.
In [314], Yao andGe employ deep learning of semisupervised
process data with a hierarchical extreme learning machine
on a soft sensor industrial application. Spatiotemporal fea-
tures from sensors can also be learnt through deep neural
networks [315]. In [318], Pan et al. propose a deep learning
network to learn features adaptively from raw mechanical
data without prior knowledge.

10) BIG DATA ANALYTICS
The enormous amount of real-time data is used for the anal-
ysis of various industrial applications has led to a trend in
I4.0 environments pointing to the use of big-data as a relevant
element in the development of next generation industrial sys-
tems. Big data analytics offer many opportunities to evaluate
data in all layers of the industrial installations, for example,
to identify preferences from end-users, to better understand
technological enablers’ behaviors, or to relate issues derived
from a combined and statistical processing of data. The
common trend in many current industrial applications is to
transfer IIoT data from the physical locations where they are
generated to some global cloud platform, where knowledge is
extracted from raw data and used to support IIoT applications.
Moreover, as [325] notes, several big data processes (such
as deep learning) require expensive computational resources
including high performance computing units and large mem-
ory to train a deep computation model with a large number
of parameters, limiting its effectiveness and efficiency for
industry informatics big data feature learning. Consequently,
real-time delay constraints might require that data elaboration
or storage is performed at the edge, i.e., close to where it is
needed, rather than in remote data centers. However, there are
concerns whether this approachwill be sustainable in the long
run. For this reason, decentralized generic big data frame-
work for industrial edge deployments like the one displayed
in Fig. 9, as they is envisioned in recent approaches, such
as [329], [323] and [324], are becoming more and more com-
mon. It is visible that the I4.0 trends push towards computa-
tion decentralization mainly from the standpoint of data own-
ership, as well as wireless network capacity. Some represen-
tative examples of this computation decentralization and of
maintaining the data at the edge for distributed operations are
the following. In [321], Ding et al. design and test a real-time
big data gathering algorithm based on indoorWSANs for risk
analysis of industrial operations. In [322], Bauer et al. show
different approaches that a classical manufacturing systems
company can take into account when applying data mining
techniques to address the requirements which come with

FIGURE 9. Generic big data framework for industrial edge deployments
as it is envisioned by recent research approaches.

the IIoT technological enabler. In [324], a distributed and
parallel big data analytics system for modeling and monitor-
ing large-scale plant-wide processes is introduced. In [326],
Basanta et al. explore the development of an industrial big
data implementation able to improve computing performance
by splitting the analytic into different segments that may
be processed by the engine in parallel using a hierarchical
model. Of course, there are also hybrid big data approaches
which employ two kinds of computation and data communi-
cation: both localized real-time processing and global offline
computations. In [323], a manufacturing big data solution
for active preventive maintenance in manufacturing envi-
ronments is implemented. Another hybrid approach is [327]
which introduces a concentric computing model paradigm
composed of sensing systems, outer and inner gateway pro-
cessors, and central processors for the deployment of big data
analytics applications in IIoT. In [329], the authors analyze
the relationship between the data processing and the energy
consumption through investigating the content correlation of
the captured data. Traditional centralized approaches are pre-
sented in [328], where the authors develop a big data toolbox
for manufacturing prediction tasks to bridge the gap between
machine learning research and concrete industrial require-
ments, and in [330], where the authors use big data services in
order to design a new method for product design, manufac-
turing, and service driven by digital twin. Table 6 displays
the extent of centrality that the various recent approaches
have adopted, in terms of computation for big data
analytics.
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TABLE 6. Types of computation for big data analytics.

11) ONTOLOGIES / SEMANTICS
In industrial automation, ontology services encompass a rep-
resentation, formal naming, and definition of the categories,
properties, and relations between the data and entities that
substantiate various industrial processes. This will lead to
the further automation of many tasks in the life cycle of
the industrial systems from design to commissioning and
operation [348]. Those services frequently rely on synergies
of industrial standards, such as IEC 61850 [342] and IEC
61499 [345], which are used to represent specifications and
resulting software models. Due to the fact that semantic
data modeling usually deals with data irregularity and diver-
sity, sophisticated dynamic modeling methods have been
derived [344]. With regards to IIoT and ICPS, OPC-UA and
semantic web technologies are able to achieve integration at
various levels [351]. UML-based approaches can fully auto-
mate the generation process of the IIoT-compliant layer that is
required for the cyber-physical components to be effectively
integrated in the shop-floor [339]. In order to achieve rapid
response to changes from both high-level control systems and
plant environment, self-manageable ontological agents can
improve flexibility and interoperability [343] and automate
the process engineering using a knowledge-based assistance
system [347]. IIoT gateways have already been integrated
with dynamic and flexible rule-based control strategies [350].
Model-driven NCS enable increased usability [331] and
model checking [332]. In the assembly line, knowledge
based ontology services can assist complementary content
customization [333], mechanical design knowledge [334],
and semantic web service composition [335]. Recognition,
semantic annotation and calculating the spatial relationships
of a factory’s digital facilities [336], as well as the model
based synthesis of its automation functionalities [337] are
other emerging topics of interest. Ontology services also
come handy in cloud manufacturing and take advantage
of semantic links to enable automated integrating and dis-
tributed updating in resource service clouds [341]. Ontology
services can also support the development of global produc-
tion network systems [338] and business integration [349]
in a more general sense, as well as CAD assembly
model retrieval (using multi-source semantics information
and weighted bipartite graph [346]) and visual exploration
systems [340].

12) HUMAN-IN-THE-LOOP
Human-in-the-loop services, will be an indispensable com-
ponent of most I4.0 approaches and applications related to

the large scale ICPS and assembly line networked environ-
ments. This is because large and complex industrial environ-
ments necessitate advanced planning and scheduling, careful
coordination, efficient communication and reliable activity
monitoring, ingredients essential for productivity and safety
purposes. A notable relevant area of interest to the researchers
recently is human tracking and localization in the industrial
facilities. There is a diverse variety of approaches in this field,
in terms of generated and used volumes of data. In [352],
Lin et al. propose an approach that leverages the inertial sen-
sors embedded in smartphones, uses WiFi fingerprints based
on the angle-of-arrival and exploits the ubiquitous presence
of diverse data to assist in human localization, thus utilizing
data of small volumes. Similarly, in [353], Kianoush et al.
propose a real-time system for human body motion sensing
with special focus on joint body localization and fall detec-
tion. The proposed system continuously monitors and pro-
cesses ambient data propagated by industry-compliant radio
devices through supporting M2M communication functions.
In [355], Papaioannou et al. propose a positioning system for
tracking people in highly dynamic industrial environments,
such as construction sites. The proposed system leverages
the existing CCTV camera infrastructure installed in the
industrial environment, along with radio and inertial sen-
sors within each worker’s smartphone to accurately track
multiple people. Consequently, in this case the data’s vol-
ume varies according to the data generation source. Even
larger volumes of data are used in [357], where Ahmed et al.
employ video analytics in order to implement motion detec-
tion framework through motion blobs and successfully pro-
vide a features-based person tracking system. Other human-
in-the-loop concepts are mobile apps developed to support
the customer integration in the product design phase and
subsequently the design of the manufacturing network [354],
cross-disciplinary mobile crowdsensing of pervasive sensor
data applied in industrial processes [356], as well as auto-
mated methodologies for worker path generation and safety
assessment [358]. Finally, cognitive systems can transform
how organizations think, act, and operate in the future [416].
Traditional computing systems have a hard time understand-
ing types of information that humans can process easily due to
the fact that human language is full of ambiguity and idioms.
The sheer amount of data available in this context calls for
novel, autonomous and lightweight data managing solutions,
where only relevant information is finally processed [417].
Cognitive systems are becoming more and more efficient
in mimicing how humans reason and process information.
For example, the IBM Watson cognitive system has already
been used by many organizations to solve business problems
by using statistical analytics, rules and business processing,
collaboration, and reporting.

13) SECURITY
Security and data ownership aspects in factory automation
and industrial operations have become a hot topic in the last
years, due to the fact that monitoring and control tasks are
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TABLE 7. Data security services for data enabling technologies.

more and more complex. ICPS are vulnerable to external
attacks due to the tight integration of cyber and physical
parts. With the establishment of the International Data Spaces
Association (IDSA), business and research take an active
part in designing a trustworthy architecture for the industrial
data economy. The IDSA aims to guarantee data sovereignty
by an open, vendor-independent architecture for a peer-to-
peer network which provides usage control of data from
all domains. According to IDSA, in order to obtain added
value from data, companies are usually dependent on the data
exchange with other companies. This is something that many
companies have been reluctant to do up to now because their
concerns about disclosing trade secrets are too great. The
IDSA targets at enabling two or more companies to agree on
a secure and regulated exchange of data and at the same time
at ensuring that each of the companies remains master of its
own data. Nevertheless, security incidents such as targeted
distributed denial of service (DDoS) attacks on power grids
and hacking of factory NCS are on the increase [365]. Secure
data management in such systems is crucial, as the increased
scalability of the deployments can frustrate effective man-
agement of security risks, partly due to the complexity of
managing the large volumes of data and risks manifesting
across interdependent systems. Security has been recently
studied across most of the technological enablers presented
in this article. Table 7 displays the services that have been
presented for security provisioning across the different tech-
nologies. In [362], a covert attack for service degradation of
ICPS is proposed, which is planned based on the intelligence
gathered by another system identification attack. In [364],
a risk assessment method is presented targeting the quan-
tification of the impact of cyberattacks on the physical part
of ICPS. The proposed method helps carry out appropriate
attack mitigation measures. In [366], Lin et al. establish a
secure remote user authentication with fine-grained access
control for IIoT, by proposing a blockchain-based frame-
work. The proposed framework leverages the underpinning
characteristics of blockchain as well as several cryptographic
materials to realize a decentralized, privacy-preserving solu-
tion. In [367], Ma et al. design a secure channel-free cer-
tificateless searchable public key encryption with multiple

keywords scheme for IIoT. In [360], Zou and Wang study
the intercept behavior of an industrial WSAN consisting
of a sink node and multiple sensors in the presence of an
eavesdropping attacker, where the sensors wirelessly transmit
their sensed data. In [359], Muradore and Quaglia present
an energy efficient intrusion detection and mitigation system
for NCS security. The system is data oriented in the sense
that it employs data-based selective encryption to reduce
energy consumption, and to detect when an attack starts and
ends. In [361], Amoah et al. present a lightweight secure
authentication mechanism for broadcast mode communica-
tion in NCS. In [363], a fuzzy probability bayesian network
approach for dynamic cybersecurity risk assessment in NCS
is proposed. In [369], Cheminod et al. present a perfor-
mancemodel for industrialM2Mcommunication, able to per-
form advanced application-layer filtering of traffic generated
by protocols widely used in industrial deployments (Mod-
bus/TCP). In [368], Zhu et al. investigate trust-based com-
munication for industrial deployments, devoting attention to
sensor-cloud communication. They propose three types of
trust-based M2M communication mechanisms for sensor-
cloud. Furthermore, with numerical results, they show that
trust-based communication can greatly enhance the perfor-
mance of sensor-cloud.

14) ENERGY MANAGEMENT
Energy management for the IIoT and WSANs has natu-
rally received significant attention, as in many cases the
devices operate on limited battery supplies (Table 8). On the
IIoT part, there have been energy efficient improvements
on QoS-aware services composition [378] (similarly for the
ICPS [392]), robust authentication protocols [398], routing
and data collection [399], [400], as well as resource allo-
cation and utilization [401] (similarly for the ICPS [404]).
On the backbone of the IIoT networks, in the cases where
Ethernet is used as an enabler, energy efficiency has also been
a timely topic [381]. Specifically, in [372], the authors inves-
tigate the IEEE 802.3az amendment, known as Energy Effi-
cient Ethernet (EEE) and address its application to Real-Time
Ethernet (RTE) networks in factory automation. Additionally,
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TABLE 8. Energy management for data enabling technologies.

in [373], the same authors expose some data service aspects
of the EEE/RTE interplay.

On the WSAN part energy efficiency is focused on
specific data intensive operations. Industrial low power
WSAN protocols are one of the key enablers of that
revolution but still energy consumption is what is limit-
ing ubiquitous deployments of perpetual and unattended
devices [376]. Real-time usage data as well as historical
data can help identify whether various WSAN components
are functioning properly [385]. Routing and data collection
is traditionally assisted energetically, either through joint
data transmission and wireless charging [375], or through
adjustable data sampling rates [402] and distributed and
collaborative sleep scheduling [383]. Other energy efficient
approaches include integrity check in the network [379], node
localization [382], data loss minimization [384], and con-
nected target coverage [387]. Energy efficient approaches for
WSANs of particular interest with respect to the data man-
agement mechanisms employed are the following: In [377],
the authors apply compressed sensing in order to break the
redundant data collection (and thus save significant amounts
of energy), by differentiating the available sensed data in prin-
cipal and redundant, through an online learning component
and a local control component. In [380], the authors derive
both global and local data storing in the WSAN, and expose
the inherent difficulties of each case (data importance degrees
definition and data stream reading ability).

Energy optimization of industrial robotic cells and assem-
bly lines is also essential for sustainable production in the
long term. A holistic approach that considers a robotic cell
as a whole toward minimizing energy consumption is pro-
posed in [390]. Dynamic low-power reconfiguration [370]
and machine energy consumption minimization [371] are
key objectives of novel assembly lines. In [66], the authors
discuss how dynamic energy management in manufacturing
systems can not only solve the current technical issues in
manufacturing, but can also aid in the integration of additional
energy equipment into energy systems. The significantly
important role of data in this process is demonstrated in [389]
where the collected data are shown to improve energy con-
sumption awareness and allows the manufacturing energy
management systems to make further analysis and to identify
where to take actions in the manufacturing process in order
to reduce the energy consumption. There have been several

energy management and energy consumption optimization
methods for the assembly line in the recent literature, with
the most notable focusing on production control [391], fore-
casting models with neural networks [393], mobile service
composition [394], real-time demand bidding [395], onto-
logical modeling [396], process parameter modeling [397],
machine energy consumption profiling [8], and concurrent
energy data collection [405].

Methodologies and a models which reliably dimension
energy scavenger properties toM2M communication require-
ments and network needs, allowing industries to optimize the
adoption of that technologies while keeping technical risks
low [374]. MAC layer power management schemes which
achieves the user specified reliability with minimal power
consumption at the node are also of interest to the M2M com-
munication community [403]. Interestingly enough, there no
significant contributions on energy management issues have
been found for the data enabling technology of NCS.

15) CLOUD
Cloud manufacturing has lately gained a fair share of atten-
tion from the automation and manufacturing communities.
Cloud manufacturing transforms manufacturing resources,
capabilities and data into manufacturing services, which can
be managed and operated in an intelligent and unified way
to enable the full sharing and circulating of manufacturing
resources and manufacturing capabilities. Cloud services in
the supply chain can greatly reduce time and costs incurred in
deploying automation systems, which are quite complex and
require large human effort to build [418]. Cloud manufactur-
ing can be divided into two categories. The first category con-
cerns deploying manufacturing software on local or global
clouds, i.e., a ‘‘manufacturing version’’ of cloud computing.
The second category has a broader scope, cutting across
production, management, design and engineering abilities
in a manufacturing business. Unlike with classic computing
and data storage, manufacturing involves physical equipment,
monitors, materials and so on. In this kind of cloud manu-
facturing, both material and non-material facilities are imple-
mented on the cloud, in order to support the whole supply
chain. The great majority of recent works can be classified
in the first category. Cloud manufacturing solutions can be
categorized according to the locality of the cloud. In the
vast majority of the recent literature the cloud infrastructure
is centrally placed, with large public clouds delivering data
usually over the internet. In Table 9, the types of data sources
and cloud locality in cloud manufacturing are displayed.

As shown in the table, a large portion of works employ
global clouds. In [406], Li et al. target manufacturing
resource composition and propose an approach that can better
cope with the temporal relationship between the resource
services in a business process. In [410], Liu et al. design
a cloud resource sharing based on the Gale-Shapley algo-
rithm and analyze it in the context of fluctuating resource
supply and demand. In [414], Sunny et al. present an agent-
adapter-based method of for manufacturing clouds to enable
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TABLE 9. Types of data sources and cloud locality in cloud manufacturing.

manufacturing with various physically connected machines
from geographically distributed locations over the Internet.
In [415], Liu et al. suggest a multi-granularity resource vir-
tualization and sharing method for cloud manufacturing.
In [408], Li et al. introduce service clustering network-based
service composition. In this approach, services are first clus-
tered into abstract services, and then a clustering network
of the abstract services is established. In [409], Hsu et al.
design an effective load-adjusted allocation algorithm for
enhancing memory reusability and improving the perfor-
mance of servers by balancing their workloads. In [407],
Li et al. consider industrial WSAN with mobile nodes and
propose a fixed-path mobile node handover strategy, assisted
by cloud services and an ants-colony algorithm. In [412],
Dai et al. propose a cloud-based decision support system for
self-healing in distributed automation systems using fault tree
analysis. Some fewer recent works employ hybrid or local
clouds. In [411], Yuan et al. study the problem of how to
maximize the profit of a local (private) cloud in architectures
of a combination of local and global (hybrid) clouds while
guaranteeing the service delay bound of delay-tolerant tasks.
In [413], Tan et al. suggest an embedded cloud database
service method for distributed IIoT monitoring.

VI. OPEN RESEARCH CHALLENGES
In this section, we identify some open research challenges on
data management in industrial networked environments and
their inherent tradeoffs. Subsequently, we focus our attention
on a wide variety of thematic topics pertaining to the require-
ments of data management, as presented in the previous
sections. These notes provide crisp insights for the design of
future data management applications.

A. ENERGY EFFICIENT DATA DELIVERY WITH SMALL
DELAYS
Ensuring energy efficient, low-latency data delivery in indus-
trial networked environments is of capital importance and
is currently receiving more and more attention in academia
and industry [419]. However, in current industrial configura-
tions, the computation of the data exchange and distribution
schedules is quite primitive and highly centralized. Usu-
ally, the generated data are transferred to a central network

controller using wireless or wired links. The controller
analyzes the received information and, if needed, recon-
figures the network paths and the data forwarding mecha-
nisms, and changes the behavior of the physical environment
through actuator devices. Traditional data distribution
schemes are usually implemented over relevant industrial
protocols and standards, like WirelessHART, 802.15.4e and
6TiSCH. Those entirely centralized and offline computa-
tions regarding data distribution scheduling, can become
inefficient in terms of end to end latency. Additionally,
in industrial environments, the topology and connectivity of
the network may vary due to link and sensor-node failures.
Also, very dynamic conditions, which make communication
performance much different from when the central schedule
was computed, possibly causing sub-optimal performance,
may result in not guaranteeing energy requirements. These
dynamic network topologies may cause a portion of indus-
trial nodes to malfunction. With the increasing number of
involved battery-powered devices, industrial networks may
consume substantial amounts of energy; more than needed
if local, distributed computations were used. In order to
address those emerging challenges of the I4.0, novel data
management layers have to be engineered over the device
and networking planes of the industrial deployments. Those
layers have to operate independently from and to complement
the routing process, targeting at distributing the data in the
networks in a decentralized manner, while at the same time
respecting the strict I4.0 requirements. In fact, not all data
need to be transferred to central network controllers prior
to delivery to the data consumers (as traditional industrial
routing approaches usually impose); in fact, data can be
also stored managed locally at selected data cache nodes,
exploiting, when needed, additional levels of information.
An initial contribution towards this direction comes from our
own work. In order to manage the data distribution process
and decrease the average access delay in the network, in [133]
and [420] we introduce the concept of a Data Management
Layer. The basic function of the Data Management Layer
is the decoupling of the data management plane from the
network plane, as shown in Fig. 10. The Data Management
Layer provides solutions such as the selection of some
nodes that will act as data caches and the establishment
of an efficient method for data distribution and delivery,
using the data caches. The selection of the data caches is
performed by balancing two requirements. On the one hand,
the number of data caches should be sufficient to make sure
each consumer finds data ‘‘close enough’’ to guarantee the
I4.0 data delivery delay requirements. On the other hand,
as the role of data cache implies a resource burden on the
selected nodes, their number should be as low as possible.
If the number and locations of data caches is already fixed in
a given industrial network, a Data Management Layer can be
able to maximize the network lifetime as well, given the data
cache locations in the network, the initial energy supplies of
the nodes, the data request patterns (and their corresponding
parameters), and the maximum delay that consumer nodes
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FIGURE 10. Conceptual design of a data management layer over an
industrial network.

can tolerate since the time they request data. We have proven
that such problems are computationally intractable [421] and
we have designed offline centralized heuristic algorithms
for identifying which paths in the network the data should
follow and on which cache nodes they should be kept,
in order to meet the delay constraints and to efficiently
prolong the network lifetime. There are still many open
research challenges regarding energy efficient data delivery
with small delays, including but not limited to the design
of exact optimization algorithms, distributed and adaptive
data path and forwarding reconfiguration (an initial approach
can be found in [422]), as well as the joint management
of data delivery schemes with efficient I4.0 communication
methods [423].

B. DATA DISTRIBUTION IN LOCAL AND MOBILE CLOUDS
As shown in Table 9 the most common current approach for
collecting and processing large volumes of data for cloud
manufacturing purposes is based on the assumption that some
network infrastructure is able to support the collection and
delivery of all these data toward the cloud, which is intended
to be the back-end aimed at processing and getting value from
such data. In general IIoT/ICPS environments, this backbone
is a wideband cellular network such as LTE. In the case
of manufacturing environments this may also be the case,
or more localized wideband infrastructures such as WiFi may
be used. In any case, an approach relying exclusively on
global cloud providers to provide holistic industrial data ser-
vices has limitations from two main standpoints. On the one
hand, wideband wireless networks may not provide sufficient
bandwidth so support the data traffic demand. On the other
hand, relying only on deployed global clouds maymakeman-
ufacturing stakeholders to lose control on their data, as data

FIGURE 11. Conceptual design of a multi-layer cloud platform.

will be transferred to data centers without any control of the
data owner. In addition, meeting the manufacturing stake-
holders requirements in terms of storage and computation
capacity may have a significant impact on the cost incurred
by the stakeholders for ICT services, which, if reduced,
could be more profitably invested in the core production
process. In order to overcome these issues there is a need of
a paradigm shift in the way the gathered data is managed and
processed. To this end, the employment of local and mobile
cloud technologies as a way to implement a multi-layer cloud
infrastructure would be necessary (Fig. 11). This will enable
the exploitation of not only global cloud services, but also
local resources available at the stationary and mobile devices
of the industrial deployments. In such environment, a number
of mobile devices (for example the devices of various oper-
ators working at the manufacturing premises) are available,
and typically their computation and storage resources are
underutilized. Instead of relying exclusively on storage and
computation services provided by a global cloud provider,
the storage and the computation tasks can be distributed
among those local devices, that will therefore form a local
(and in some cases mobile) cloud. In this paradigm, global
cloud services can be used only when (i) global information is
needed in order to better analyze the status of the production
process, or (ii) local resources are saturated and additional
capacity is needed. For example, storage available at local
devices would be enough only for storing information about
parts produced in a limited time window in the past. Older
data may be stored on a global cloud storage service, possibly
in an encrypted form. However, data related to most recently
produced parts would still be available locally, and could be
accessed without transferring back and forth them between
local devices and global cloud data centers. The resulting
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solution will be a multi-layer cloud platform, whereby global
resources and local resources will be used elastically and in a
synergic way, depending on the need of the underlying indus-
trial application. A core recent paradigm for addressing those
challenges can be edge computing, which calls for processing
the data at the edge of the network. Edge computing refers
to the enabling technologies allowing computation to be per-
formed at the edge of the network, on downstream data on
behalf of cloud services and upstream data on behalf of IIoT
services [424]. In other words, ‘‘edge’’ can be any computing
and network resources along the path between data sources
and cloud data centers. Edge computing has the potential to
address the concerns of response time requirement, battery
life constraint, bandwidth cost saving, as well as data safety
and privacy.

C. DISTRIBUTED, REAL-TIME DATA SECURITY AND
OWNERSHIP FOR INDUSTRIAL ROBOTS AND ASSEMBLY
LINE
As shown in Table 7, there is a lot of work already imple-
mented in terms of data security for IIoT/ICPS, WSANs,
NCS and M2M Communication. However, the absence of
security mechanisms for the technological enablers of the
assembly line and the industrial robots is notable. Also, initial
frameworks for the critical issue of data ownership already
exist (for example, IDSA), but algorithmic solutions inside
those frameworks are still quite preliminary. More than that,
the decentralization of the production process, the integration
with IIoT technologies (the nature of which makes them
vulnerable) and the introduction of open and ubiquitous data,
leaves the assembly lines and robots further exposed to exter-
nal threats. To date, security has not been a concern for the
(in many cases legacy) assembly lines and industrial robots.
Yet, practitioners have recognized that the open and uncon-
trollable nature of the M2M communication enabler opens
these systems to a variety of possible security threats and vul-
nerabilities. Security solutions will also need to be operated
in a distributed manner, because centralized solutions require
transmitting data to the central controller, which may result
in data loss and delay to the threat detection decisions, par-
ticularly in large-scale deployments. In contrast, distributed
solutions are much more agile and robust to data transmis-
sion failures and, more importantly, scale to larger sizes. For
example, industrial anomaly detection for malicious attacks
(for example, false data injection) can be performed either
at the central controller or at local distributed devices [275].
Finally, following the same example, since real-time informa-
tion is critical and even a single abnormal security behavior
may lead to a catastrophic cascade of failures throughout
the whole system, abnormalities should be detected as early
as possible to minimize the possibility of potential dam-
age. To achieve this, real-time data security solutions will
be able to provide online threat detection is needed. Those
solutions should be able to identify the anomaly condition of
each observation, as soon as the local data observations are
collected.

D. CONVERGENCE BETWEEN THE INDUSTRIAL /
AUTOMATION / MANUFACTURING FIELD AND THE
COMMUNICATION / NETWORKING / COMPUTATION
FIELD
NCS currently provide deterministic services for the assem-
bly line and the industrial robots, while the IIoT and the
WSANs provide best effort services for the entire automation
pyramid. Also, as it was demonstrated in Table 3, the recent
architectural trends for assembly line and industrial robot
installments are focusing on centralized data management,
while the trends for IIoT and WSANs are pushing towards
decentralization, mostly due to the emerging data ubiquity.
It has already been argued that a convergence should occur,
and that future converged industrial deployments should sup-
port both best effort and deterministic services, with very
low latency and jitter [82]. This convergence is motivated
even more and will be further extended with the pervasive-
ness and the variety of different data sources in the shop-
floor. Consequently, industrial automation providers face a
challenge and can significantly benefit from communica-
tion/networking technologies and services. If they are not
able to find powerful and flexible computing services that
would enable them to store and process ‘‘as required’’ the
manufacturing information they have generated, they will
never be able to leverage on faster and more complete control
of the production process in the digital domain to gain a
competitive advantage. If they remain to perform the analysis
as they currently have to perform, i.e., on the physical domain,
they will continue suffering a negative impact on produc-
tion yield and costs. Currently, analysis of industrial data is
typically achieved through centralized cloud-based services.
However, this approach may present significant issues from
the standpoint of data ownership, network capacity, as well as
computation bottlenecks. Those challenges can be addressed
through the exploitation of emerging networking, communi-
cation and computation paradigms, such as edge/fog comput-
ing, in order to move computation close to where data is pro-
duced. Moreover, distributed machine learning frameworks,
and the delegation of full [425] or partial [426] data analytics
on mobile nodes passing by IIoT devices, can significantly
improve accuracy obtained in the learning task and decrease
the amounts of energy spent to circulate data among the
involved nodes.

VII. CONCLUSION
In this survey article we reviewed the recent litera-
ture (2015-2018) on data management as it applies to
networked industrial environments. Of particular inter-
est to our review have been the data enabling tech-
nologies and the data centric services that both the
Communications/Networking/Computation field and the
Industrial/Manufacturing/Automation field are providing,
in order to boost the production performance and address
the emerging I4.0 requirements. We focused the survey at
first on recent practical use cases and emerging architectural
trends, where we made a note on the convergence that should
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occur between the two scientific fields, so as to enable an effi-
cient future data management approach. Then, we performed
an exhaustive survey on the most relevant and acclaimed
research journals and came up with a taxonomy of the recent
works in technologies and services. Finally, after this holistic
research, we identified several interesting open challenges for
the future; energy efficient data delivery with small delays,
data distribution in local and mobile clouds, distributed,
real-time data security for industrial robots and assembly line,
and convergence between the two main scientific fields.
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