
On the Performance of Data Distribution Methods
for Wireless Industrial Networks

Theofanis P. Raptis∗, Andrea Formica†, Elena Pagani†, Andrea Passarella∗
∗Institute of Informatics and Telematics, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy

†Department of Computer Science, University of Milan, Via Celoria 18, 20135 Milano, Italy
{theofanis.raptis, andrea.passarella}@iit.cnr.it, {andrea.formica@studenti, pagani@di}.unimi.it

Abstract—The vast amounts of data generated in wireless in-
dustrial networked deployments introduce significant challenges
on the data distribution process to consumer nodes within
the timeframes imposed by the requirements of the Industry
4.0 paradigm. Using technological and methodological enablers,
we can compose centralized or decentralized data distribution
methods, which are able to help meeting the data requirements of
the industrial applications. In this paper, using the technological
enablers of WirelessHART, RPL and the methodological enabler
of proxy selection as building blocks, we compose the protocol
stacks of four different methods (both centralized and decentral-
ized) for data distribution in wireless industrial networks over the
IEEE 802.15.4 physical layer. Although there have been several
comparisons of relevant methods in the recent literature, we
identify that most of those comparisons are either theoretical,
or based on abstract simulation tools, unable to uncover the
specific, detailed impacts of the methods to the underlying
networking infrastructure. We implement the presented methods
in OMNeT++ and we evaluate their performance via a detailed
simulation analysis. Interestingly enough, we demonstrate that
the careful selection of a limited set of proxies for data caching
in the network can lead to increased data delivery success rate
and low data access latency.

Index Terms—WirelessHART, RPL, Proxy Selection, Data
Caching, OMNeT++, Industry 4.0

I. INTRODUCTION

The proliferation of data generated from various networked
industrial devices have led to data sizes which can range from
terabyte to petabyte even for a single industrial deployment. In
core industrial applications, the relevant devices generate about
1000 exabytes in total volume annually, and a great increase
can be expected in the next ten years [1]. Those data amounts
introduce great challenges not only to capture, manage, and
store large data sets but also to efficiently deliver them to the
data consumer nodes within the timeframes imposed by the
requirements of the emerging paradigm of Industry 4.0.

Traditionally, data generated in wireless industrial networks
are delivered to the data consumers via a central network con-
troller. This approach, although robust, has limited flexibility,
and makes the process of data distribution in the network
more difficult and time consuming [2]. An alternative to this
entirely centralized approach, is the use of intermediate, local

This work has been funded by the European Commission through the
FoF-RIA Project AUTOWARE: Wireless Autonomous, Reliable and Resilient
Production Operation Architecture for Cognitive Manufacturing (No. 723909).

cache nodes, which can provide distributed data replication,
and lead to high flexibility, reconfigurability, and maintenance
[3]. In order to achieve this decentralized mode of operation,
the industrial network and the data management strategy
must be built upon a flexible combination of the available
communication and data management technologies, capable of
meeting the data requirements of the industrial applications,
with particular attention on time-critical automation.

Relevant technologies and methods have already been de-
signed and implemented, and some of them are already used
in networked industrial deployments. Some notable examples
(able to operate on top of IEEE 802.15.4 physical layer)
include WirelessHART [4], which provides backward com-
patibility with older industrial standards, RPL [5], which
was designed with the objective to meet the requirements of
industrial routing with low-power and lossy networks, as well
as proxy utilization methods within the existing networking
infrastructure [6], with the aim of meeting the data access
latency constraints by locally caching industrial data. A key
objective in recent literature is the performance comparison
of methods employing such technological and methodological
enablers, in order to fully understand the benefits and short-
comings of each.

Related works. In the recent literature, there have been
several comparisons (both theoretical and simulative) among
enablers that we consider. On the theoretical side, a compari-
son of WirelessHART and ZigBee is provided in [7], a compar-
ison of WirelessHART and ISA100.11a, both from a technical
and a systematical point of view is provided in [8], and a
theoretical study on the relationship between WirelessHART
and IEEE 802.15.4e, as well as on what impact the latest
IEEE 802.15.4e has on WirelessHART and how industrial
operators could benefit from both standards is provided in
[9]. On the simulative side, RPL comparisons to other routing
protocols like LRP and LOADng in different application areas
are provided in [10], [11], and a latency aware proxy selection
method comparison to RPL is provided in [12]. To the best
of our knowledge, there is no direct performance comparison
of methods incorporating all three aforementioned elements
(WirelessHART, RPL, proxies), and in most cases, opposite to
our approach, the comparisons are either theoretical ([7]–[9]),
or they employ high-level simulation tools, thus not being able
to uncover the underlying network specifics ([12] - Matlab).

Our Contribution. In this paper, contrary to the recent978-1-7281-0270-2/19/$31.00 ©2019 IEEE

theoretical and abstract simulative comparisons, we provide
the following contributions:

• We analyze the characteristics of four protocol stacks
for data distribution in wireless industrial networks, built
mainly from proposed standards such as IEEE 802.15.4,
IETF RPL and IEC WirelessHART, and adopting either a
centralized (data accessed only at the network controller)
or distributed (data replicated in proxies) approach.

• We implement the methods in OMNeT++ Network Sim-
ulator, by extending and customizing the simulator ac-
cording to the needs of our study.

• We evaluate the performance of the four methods via
a detailed simulation analysis. The use of OMNeT++
reveals detailed performance insights about industrial
data distribution. We show that a limited number of
data proxies – carefully placed in order to limit delay
in data retrieval – effectively helps in fulfilling latency
constraints.

II. METHODS FOR INDUSTRIAL DATA DISTRIBUTION

In this section, we design four methods targeting data
distribution for wireless industrial networks. We first present
the network model we consider, then the technological and
methodological building blocks that we use and finally the
centralized and decentralized methods that we design. The
layout of the methods is presented in Table I.

We consider networks of industrial devices which consist of
sensor motes, actuators and controllers and are operating at the
physical layer in the 2.4 GHz ISM band using IEEE 802.15.4
radios. In network configurations of such type, a central
network controller maintains centralized network knowledge.
This is usual in industrial applications, in which the locations
of the nodes are known, traffic flows are deterministic and
communication patterns are established a priori. We assume
that the controller knows all the shortest paths in the network.

Sensor nodes perform monitoring tasks (producers), and in
some cases, their sensor data are needed either by other sensor
nodes, which could need additional data to complement their
own local measurement, or by actuator nodes, which use the
sensor data so as to perform an actuation (consumers). When
needed, a consumer can ask for data of interest using the
primitives defined by the underlying routing protocol from
a sensor node. The control of the data distribution process
is centralized; however the data distribution itself can be
decentralized and cooperative, by caching the data in identified
nodes in the network, the proxy nodes. Proxy nodes are able
to store data that can be accessed in a timely manner from the
consumer nodes of the network.

We assume that the data generation and access processes are
not synchronized. Specifically, we assume that data consumers
request data at an unspecified point in time after data have been
generated by data producers. This demarcated model of data
exchanges can be formulated as a publish-subscribe (pub/sub)
model. In a pub/sub model, a consumer subscribes to data,
i.e., denotes interest for it to the corresponding proxy, and the
relevant producer publishes advertisements to this proxy. The

pub/sub process is regulated at the central network controller,
which maintains knowledge on the sets of producers, con-
sumers and requests. Based on this, the network controller can
find an appropriate set of proxies based on the algorithm we
present next. Inside the network, the proxies are responsible
for matching subscriptions with publications, i.e., they provide
a rendezvous function for storing the available data according
to the corresponding subscriptions. The producers do not hold
references to the consumers, neither do they know how many
consumers are receiving their generated data.

A. Building blocks

We now present the main technological and methodological
enablers which we use as building blocks for our methods.

1) WirelessHART (IEC 62591): WirelessHART [4] is a
wireless sensor networking technology based on the High-
way Addressable Remote Transducer Protocol (HART). De-
veloped as a multi-vendor, interoperable wireless standard,
WirelessHART was defined for the requirements of industrial
field device networks. The protocol utilizes a time synchro-
nized, self-organizing, and self-healing mesh architecture. An
important characteristic of WirelessHART MAC layer which
differentiates it from the typical 802.15.4 CSMA/CA MAC
layer is that it combines slow frequency-hopping and a TDMA
scheme that utilizes a centralized a-priori slot allocation
mechanism [13]. Two different mechanisms are provided for
message routing: graph routing and source routing. In this
work we use the source routing option, which uses ad-hoc
created routes for the messages (instead of the pre-determined,
redundant routes of graph routing) without providing any path
diversity.

2) RPL (IETF RFC 6550): The RPL routing framework
[5] is suitable for networks composed of many embedded
devices with limited power, memory, and processing resources
and is able to meet the requirements of a wide range of
monitoring and industrial applications. It is widely considered
as an important networking solution for various industrial
sectors. There are two modes RPL can choose from; one
is called non-storing mode, and the other is called storing
mode [14]. In non-storing mode, the routing tree root (in
our case the central network controller) collects and maintains
topology information of the whole network. In storing mode,
a node keeps a complete list of routing entries for nodes
in its sub-routing trees. Consequently, there is a trade-off
between storing and non-storing mode of operation in terms of
computing and communication resources. For example, storing
mode requires more memory in intermediate nodes while non-
storing mode causes data packets to increase in size which uses
more power and bandwidth.

3) Latency-aware proxy selection: In the context of wire-
less industrial networks, one could leverage the set of nodes
present at the edge of the network to distribute functions
that are currently being implemented by the central network
controller. Many flavors of distributed data management exist
in the networking literature, depending on which edge devices
are used. In [12], the authors consider a distributed approach

TABLE I
LAYOUT OF THE COMPARED METHODS

C1 D1 D2 C2
Data cache Netw. Contr. LCAs Proxies Netw. Contr.

APP publish-subscribe
NET RPL non-st. RPL st. source routing
MAC CSMA/CA WirelessHART
PHY 802.15.4 (2.4 GHz)

and use the multitude of sensor nodes present in an industrial
physical environment (e.g., a specific factory) to implement
a decentralized data distribution, whereby sensor nodes cache
data they produce and provide these data to each other upon
request. In this case, the choice of the sensor nodes where data
are cached must be done to guarantee a maximum delivery
latency to nodes requesting those data. The objective function
of the proxy selection minimizes the number of proxies. The
main constraint is put on the guarantee that the value of the
average end-to-end data access latency by the consumers in the
network has to remain below a given time threshold imposed
by the industrial operator. Each node has to be assigned to
one and only one proxy, and all nodes are considered for
potentially being selected as proxies.

B. Centralized Methods for Industrial Data Distribution

The composition of the two centralized methods is shown
in Table I labeled as C1 and C2. The common aspect of the
centralized methods is that they cache the generated data at
the central network controller. Consequently, when a consumer
node requires data access, the data request has to be sent to the
network controller and the network controller has to make the
data available to the consumer. The main differences of the two
centralized methods are lying on the MAC and NET layers.
Method C1 is using RPL in non-storing mode in order to
route the relevant data over the typical CSMA/CA protocol of
802.15.4. That means that the slots in each frame are generally
contention-based. On the contrary, method C2 is using source
routing over the WirelessHART MAC protocol. In this case,
the use of TDMA and pre-scheduled timeslots prevents mes-
sage collisions, and frequency hopping and retransmissions
limit the effects of temporal and frequency interference (a
retransmission occurs on a different frequency).

C. Decentralized Methods for Industrial Data Distribution

The composition of the two decentralized methods is shown
in Table I labeled as D1 and D2. The common aspect of the
decentralized methods is that they cache the generated data
not at the central network controller, but at selected nodes,
distributed in the network. Method D1 caches the data at the
locations of the lowest common ancestors (LCAs) for each
producer-consumer pair, while method D2 caches the data at
the locations of the proxies. The proxies are selected before
the industrial data distribution process begins, in the following
manner: the network controller is initially set as the first proxy
of the network. Then, the number of proxies is gradually
increasing, until it reaches a number such that the average

access latency does not violate the maximum data access
latency threshold. In every iteration, the exact selection of the
next proxy in the network is performed using a myopic greedy
addition. Each candidate node is examined, and the one whose
addition to the current solution reduces the average access
latency the most is added to the incumbent solution. To this
end, the latency between a candidate proxy and a consumer is
estimated as the length of the shortest path that is connecting
them multiplied by the expected latency on each hop. The
NET layers of the two methods are different. Method D1 is
using RPL in storing mode in order to route the relevant data
to the LCAs, while method D2 is using source routing to the
proxies.

III. SIMULATION MODEL

We conducted a performance comparison among the meth-
ods described in section II through simulations. We used
OMNET++ Network Simulator version 4.4.1.1 As far as the
modeling of the WirelessHART protocol stack is concerned,
we started with NIST modules [15],2 which we customized
according to our needs. In this section, we describe the main
peculiarities of the models we developed for the presented
methods. As a preliminary consideration, we point out that all
the simulations consider networks with a square grid topology
(Fig. 1), where the network controller is always the node with
coordinates (0, 0) in the top left vertex. We did not reproduce
node failures nor battery discharge; hence, all nodes correctly
work for the whole simulation duration.

Fig. 1. Square grid topology scheme.

A. Route computation

Since nodes never crash in our simulations and the topology
does not change, routes in the networks may be computed
offline, and then uploaded in the models in order to speed
up simulation execution. As the routing algorithm, we used
Dijkstra’s algorithm [16] to compute the shortest-path tree
rooted in the network controller and connecting all nodes.
The computed tree is used to obtain the needed routes in the
presented methods.

We consider full-duplex links. For RPL in storing mode, the
path between any two nodes s and d follows the branches of
Dijkstra’s tree from s up to the LCA of both s and d, and then
downward along the appropriate branch toward d. Hence, in
RPL storing, every node has in its routing table the routes to
both its parent, and all its descendants. In RPL non-storing, the

1https://omnetpp.org/
2https://github.com/usnistgov/tesim omnetpp

routing tables of all nodes but the controller contain just the
address of the parent node, while the controller has routes to
every other node. In WirelessHART, nodes know just the route
to reach the controller, which by contrast knows the routes to
every other node. Finally, in proxy source routing, every node
knows just the route to its own proxy. In all cases, the routing
tables are filled as a preliminary operation when the simulation
starts.

B. Channel scheduling for WirelessHART

One main problem we encountered in modeling Wire-
lessHART is that the channel scheduling mechanism has yet
to be standardized, and just some requirements are indicated
in the standard document [17]. Two problems have been dealt
with: how to assign slots to pairs of nodes in order to avoid
collisions, and how to form the superframe.

As far as the former problem is concerned, we implemented
a graph coloring algorithm on the tree topology, with two
constraints to be fulfilled. Considering the maximum number
of neighbors owned by inner nodes, 5 colors are needed for
the solution, and they must be assigned to nodes so that
two neighbor nodes have different colors, so as to send their
frames in different slots, and avoiding collisions between
their transmissions. Moreover, the neighbors of a certain
node n must have different colors, in order to avoid the
hidden terminal problem. The example coloring in Fig. 1
satisfies both requirements; e.g., contemporary transmissions
from nodes with coordinates (0, 0) and (1, 1) cannot occur,
thus avoiding collisions in nodes with coordinates (0, 1) and
(1, 0). Graph coloring too is computed offline, and assigned
slots are configured in the nodes when the simulation starts.

As far as the latter problem is concerned, we opted for
assigning slots in the superframe with the aim of maximizing
the sleep time of nodes and minimizing latency. The trivial
solution of building a superframe formed by N slots, with N
the number of nodes in the network, is unsatisfactory. Indeed,
it neglects the possibility of nodes that contemporarily use
a slot of a given color without provoking collisions. This is
for instance the case of nodes with coordinates (0, 0) and
(1, 2) in Fig. 1, which are not neighbors nor they have any
neighbor in common. Moreover, it forces a node with k
neighbors to use k superframes to send one frame to each
one of them. As an example, in a network with 180 nodes,
and with slot duration of 10 ms., a node with 4 neighbors
will spend 180 × 4 = 720 ms. to send a frame to each one
of its neighbors. A node stays awake for up to 5 slots (1
for transmission and 4 for reception to/from neighbors) in
each superframe. The alternative solution of having one slot
per color in a superframe is disadvantageous under the point
of view of energy consumption. Indeed, a node with four
neighbors must stay awake in all 5 slots of the superframe
to both send in its slot and receive from its neighbors.

In our solution, by contrast, a superframe is such that,
for each node, there are as many slots as the number of its
neighbors; e.g., node 3 in Fig. 1 is entitled to use 4 blue slots in
each superframe. This way, in a certain superframe, a node n

may send a frame to each one of its neighbor, and parallelism
between distant nodes is allowed. With this policy, the upper
bound on the superframe size is #colors × node degree,
which in our networks amounts to 5 × 4 = 20 slots –
corresponding to 200 ms. – thus being independent of the
network size N . The minimum superframe length is achieved
when the tree degenerates to a list: in this case 3 colors are
enough, each node has two neighbors, and 3×2 = 6 slots per
superframe are needed. Hence, latency is limited. Furthermore,
this solution allows to save battery energy with respect to the
choice of using one slot per color. In fact, a node stays awake
for at most 8 slots per superframe (4 for transmission and
4 for reception to/from neighbors), if it owns four neighbors.
This is seldom the case in our simulations: with 180 nodes we
obtained a superframe size of 15 slots and the maximum node
degree is 3. We modeled queues in the MAC layer as multiple
FIFO queues, one for each destination, so that a node may
send a frame to a neighbor as soon as a slot for that neighbor
occurs, also if older frames to other neighbors exist (but in
the respective, different, queue).

In the next section, the simulation conditions are detailed,
including the number of consumers and proxies configured for
each simulation.

IV. PERFORMANCE EVALUATION

We study the performance of the presented methods in two
different scenarios, namely, either with variable number of
nodes and fixed percentage of both producers and consumers,
or with fixed number of nodes and variable number of con-
sumers. In all simulations, the producers generate new data
according to a uniform distribution probability with a period of
3s. Each consumer generates 400 requests; generation begins
with a few seconds of delay from the simulation start in
order to allow producers to produce the data. Each simulation
reproduces 40 minutes of system operation. Every experiment
is run 5 times, with different random seeds, and results are
averaged; in the plots, confidence intervals are also shown.
Some preliminary tuning was needed in order to optimize
system behavior. We set the queue length at MAC layer to
500, in order to avoid message loss when the network is
underloaded. As far as CSMA/CA is concerned, preliminary
experiments allowed to reach 100% message delivery when
up to 7 retransmissions can be performed in order to over-
come collisions. As far as the proxy selection algorithm is
concerned, we set the average data access latency threshold to
60 ms.

The main considered performance metrics are: success rate,
defined as the percentage of requests from consumers that
obtained a response, and latency, defined as the time elapsed
between a request generation by a consumer, and the reception
of the corresponding response.

In the first scenario, the number of nodes varies between
20 and 180. For all cases, both producers and consumers
amount to 10% of the total number of nodes. In Fig.2(a),
the success rate is shown. The use of proxies in method D2
allows to maintain a success rate very close to 100%, and

88

90

92

94

96

98

100

20 60 100 140 180

%
 s

u
c
c
e
s
s
 r

a
te

Number of nodes

C1

D1

C2

D2

0

0,5

1

1,5

2

20 60 100 140 180

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

s
)

Number of nodes

C2
D2
D1
C1

0

2

4

6

8

10

12

20 60 100 140 180

N
u

m
b

e
r

o
f

p
ro

x
ie

s

Number of nodes

C1

D1

D2

(a) (b) (c)

Fig. 2. Performance for variable number of nodes: (a) success rate; (b) average latency; (c) number of proxies.

D1 (RPL in storing mode) mimics quite well this behavior
thanks to the proxies placed in the LCAs of the producer-
consumer pairs. By contrast, centralized solutions are heavily
penalized with the growing number of nodes, and therefore of
both consumers and producers: this leads to a higher number of
generated messages that converge toward the central network
controller. In the case of C1 (RPL in non-storing mode), an
increasing number of losses due to collisions is observed as
a consequence. In the case of C2 (WirelessHART), which
uses time slotting, collisions do not occur. Rather, messages
accumulate in the queues and are lost due to buffer overflow,
while nodes wait the appropriate slot for transmitting. This
also explains the discontinuity for 100 nodes: with increasing
number of nodes, the tree produced by the Dijkstra’s algorithm
changes, and buffer congestion distributes differently across
nodes. Results for C2 with 180 nodes are not available as the
model was computationally too heavy for the simulator, which
ran out of memory.

The average latency, which is shown in Fig.2(b), confirms
that the employment of proxies allows to reduce latency. The
huge growth in C2 latency is due to messages waiting in
the queues for longer times before being transmitted, which
provokes higher delays than the retransmissions performed by
CSMA/CA in the case of C1. We also measured the maximum
latency observed by consumers: it shows the same trend as
the average latency, with a greater separation amongst curves.
Method D2 allows to fulfill the requirement about latency quite
well: average latency is below 60ms for networks of up to
100 nodes. For increasing number of nodes, the constraint is
slightly violated (average latency is 77ms with 180 nodes) and
the algorithm tries to deal with this by increasing the number
of proxies from 1 to 2, as shown in Fig.2(c) where the number
of LCAs used as proxies by D1 is shown as well. The lowest
latency achieved by D2 indicates that the proxies are placed in
a more appropriate place – depending on the positions of both
producers and consumers – than with D1 where the placement
just depends on the tree topology. Both C1 and C2 have just
one proxy that is the central network controller.

In order to study the traffic distribution, and also to estimate
energy consumption by different nodes, we analyze heatmaps
(Fig. 3) taken in a network of 100 nodes and based on the num-

ber of messages transmitted and received by nodes, which are
the most energy-consuming operations. A centralized solution
such as C1 (and similarly C2) concentrates traffic on the nodes
of the tree nearer to the controller (Fig.3(a)). The number
of managed messages, compared against the maximum queue
length, allows to highlight the problem of buffer overflow
mentioned above for C2: nodes nearer to the controller discard
almost 10000 messages. By contrast, the heatmap for D1
(Fig.3(b)) evidences that the tree backbone – where LCAs lie
– is formed by nodes on the left side of the network, which are
also the most congested in a centralized solution (Fig.3(a)).
The two proxies selected by D2 (Fig.3(c)) are the controller
(0,0) and the node with coordinates (5,6).

In the second scenario, we consider a network of 100 nodes
(hence, 10 producers) and vary the number of consumers such
that ≥ 1 consumers correspond to each producer. The results
confirm what observed before: while proxies allow to maintain
a success rate (Fig.4(a)) very close to 100% (99.785% with
20 consumers), the other solutions – and in particular the
centralized ones – suffer the higher traffic, which produces
either collisions (in the case of CSMA/CA), or higher latencies
and message drop (in the case of TDMA). The average latency
is shown in Fig.4(b) and is similar to what obtained in the
first scenario. This time, the network size is constant while
consumers become more dense. This is why the values are
almost constant, with a small decline for 15 consumers where
possibly some consumer is nearer to the controller than with 10
consumers. The D2 method succeeds in fulfilling the latency
threshold with an average latency of at most 66ms for the case
of 20 consumers. As far as the maximum experimented latency
is concerned, in C2 it is constant and equal to 2.8s, determined
by the consumer furthest from the controller. By contrast, the
decentralized solutions achieve maximum latency of 0.62s for
D1 and 0.46s for D2 respectively, showing their adaptability
to the positions of both producers and consumers. It is worth
noting that D2, while able to guarantee an average latency
comparable to the configured threshold, provides no guarantee
for the performance observed by the worst consumer. The
maximum latency of 0.46s is obtained with 20 consumers,
while in the first scenario the maximum latency was 0.40s for
a network of 180 nodes.

� � � � � � � � � 	

�
�

�
�

�
�

�
�

�
	

�

����

����

	���

�����

�����

� � � � � � � � � 	

�
�

�
�

�
�

�
�

�
	

�

����

����

	���

�����

�����

� � � � � � � � � 	

�
�

�
�

�
�

�
�

�
	

�

����

����

	���

�����

�����

(a) (b) (c)

Fig. 3. Traffic heatmap for: (a) C1 (RPL in non-storing mode); (b) D1 (RPL in storing mode); (c) D2 (proxy selection algorithm).

88

89

90

91

92

93

94

95

96

97

98

99

100

10 15 20

%
 s

u
c
c
e
s
s
 r

a
te

Number of consumers

C1

D1

C2

D2

(a)

0

0,5

1

1,5

2

10 15 20

A
v
e
ra

g
e
 l
a
te

n
c

y
 (

s
)

Number of consumers

D2
C2
D1
C1

(b)

Fig. 4. Performance for variable number of consumers: (a) success rate; (b)
average latency.

V. CONCLUSIONS

In this paper, we used WirelessHART, RPL and proxy
selection as building blocks, in order to compose the protocol
stacks of four different industrial data distribution methods
(both centralized and decentralized) in wireless industrial
networks. We implemented the methods in OMNeT++ and we
evaluated their performance via a detailed simulation analysis.
We demonstrated that the careful selection of a limited set of
proxies for data caching in the network can lead to increased
data delivery success rate and low data access latency.

REFERENCES

[1] S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-Based Techniques Focused
on Modern Industry: An Overview,” IEEE Transactions on Industrial

Electronics, vol. 62, no. 1, pp. 657–667, Jan 2015.
[2] D. V. Queiroz, M. S. Alencar, R. D. Gomes, I. E. Fonseca, and

C. Benavente-Peces, “Survey and systematic mapping of industrial Wire-
less Sensor Networks,” Journal of Network and Computer Applications,
vol. 97, pp. 96 – 125, 2017.

[3] M. C. Lucas-Estan, M. Sepulcre, T. P. Raptis, A. Passarella, and
M. Conti, “Emerging Trends in Hybrid Wireless Communication and
Data Management for the Industry 4.0,” Electronics, vol. 7, no. 12,
2018.

[4] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,
“WirelessHART: Applying Wireless Technology in Real-Time Industrial
Process Control,” in 2008 IEEE Real-Time and Embedded Technology
and Applications Symposium, April 2008, pp. 377–386.

[5] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” IETF RFC 6550, March 2012.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6550.txt

[6] T. P. Raptis, A. Passarella, and M. Conti, “Maximizing industrial IoT
network lifetime under latency constraints through edge data distribu-
tion,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), May
2018, pp. 708–713.

[7] T. Lennvall, S. Svensson, and F. Hekland, “A comparison of Wire-
lessHART and ZigBee for industrial applications,” in 2008 IEEE In-
ternational Workshop on Factory Communication Systems, May 2008,
pp. 85–88.

[8] S. Petersen and S. Carlsen, “WirelessHART Versus ISA100.11a: The
Format War Hits the Factory Floor,” IEEE Industrial Electronics Mag-
azine, vol. 5, no. 4, pp. 23–34, Dec 2011.

[9] D. Chen, M. Nixon, S. Han, A. K. Mok, and X. Zhu, “WirelessHART
and IEEE 802.15.4e,” in 2014 IEEE International Conference on Indus-
trial Technology (ICIT), Feb 2014, pp. 760–765.

[10] M. Vucinic, B. Tourancheau, and A. Duda, “Performance comparison
of the RPL and LOADng routing protocols in a Home Automation
scenario,” in 2013 IEEE Wireless Communications and Networking
Conference (WCNC), April 2013, pp. 1974–1979.

[11] H. Audeoud and M. Heusse, “Experimental Comparison of Routing
Protocols for Wireless Sensors Networks: Routing Overhead and Asym-
metric Links,” in 2017 29th International Teletraffic Congress (ITC 29),
vol. 1, Sep. 2017, pp. 55–62.

[12] T. P. Raptis, A. Passarella, and M. Conti, “Performance Analysis of
Latency-Aware Data Management in Industrial IoT Networks,” Sensors,
vol. 18, no. 8, 2018.

[13] O. Khader, A. Willig, and A. Wolisz, “WirelessHART TDMA Protocol
Performance Evaluation Using Response Surface Methodology,” in
2011 International Conference on Broadband and Wireless Computing,
Communication and Applications, Oct 2011, pp. 197–206.

[14] W. Gan, Z. Shi, C. Zhang, L. Sun, and D. Ionescu, “MERPL: A
more memory-efficient storing mode in RPL,” in 2013 19th IEEE
International Conference on Networks (ICON), Dec 2013, pp. 1–5.

[15] Y. Liu, R. Candell, K. Lee, and N. Moayeri, “A simulation framework
for industrial wireless networks and process control systems,” in 2016
IEEE World Conference on Factory Communication Systems (WFCS),
May 2016, pp. 1–11.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec 1959.

[17] M. Nobre, I. Silva, and L. A. Guedes, “Routing and Scheduling
Algorithms for WirelessHART Networks: A Survey,” Sensors, vol. 15,
no. 5, pp. 9703–9740, 2015.

