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Abstract  

Deep learning has been particularly successful in many fields such as computer vision in recent years. However, only few applications of Deep 

Learning can be found in the manufacturing context. Potentially overloading a computer network with the large amounts of data as well as 

limited computing power represent a big obstacle, especially for production sensitive data. To make Deep Learning applicable in production, 

these problems are described and a solution utilizing Time-Sensitive Networking Standards and transfer learning is developed. Then an 

exemplary application for the visual control of workpieces in ongoing production is implemented in a test factory. 
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1. Introduction 

A globalized and connected world puts companies in an 

increasingly competitive environment. In addition, there is a 

change in purchasing behaviour. We are moving in more and 

more areas to a buyer-oriented market, in which customers 

demand products that are individually customized [1] to their 

needs and which are best delivered to them on the same day. 

This requires the integration of digital technologies into 

production. Such concepts are summarized in Germany under 

the term Industry 4.0 [2]. The use of cyber-physical 

production systems entails a networked manufacturing 

process in which large amounts of data are generated which 

are used for analysis purposes. An additional concept of 

Industry 4.0 is the use of modularized production systems 

with manufacturer-independent components. 

The quality of the goods produced must also be guaranteed 

in the production of small batch sizes up to batch size 1. This 

poses special challenges for visual quality control, as the 

products can sometimes differ drastically from each other in 

their properties such as surface quality, shape, colour, 

integrated components and much more. 

This paper shows a concept of how these visual quality 

control issues can be solved, and a system be integrated into a 

modular factory using new technologies and cross-

manufacturer standards.  

The structure is as follows: Chapter 2 names requirements 

that have been identified in such a context for visual quality 

control. Furthermore, Deep Learning concepts in the field of 

machine vision are briefly discussed. Some basics of the 

standards used for the network are also mentioned. In 

addition, the SmartFactoryKL, the test environment used for 

the implementation, is described. Chapter 3 deals with the 

detailed design of the individual concepts, technologies and 

components for the explicit use case and presents the results. 

Chapter 4 concludes with a discussion of the results. 

2. Requirements and enabling technologies 

Identifying objects with high variety is a big challenge for 

automated visual quality control methods [3]. Requirements 

that must be met by quality control in a production 

environment as described above are therefore as follows: 
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I. Quality control must be carried out continuously and 

reliably.  

II. Quality control must be able to adapt flexibly to new 

product variants, which may also be produced 

simultaneously on the same production line. 

III. Quality control must be scalable and applicable to 

various production processes. 

 

These requirements also result from the design of the 

production facilities according to the lean principle, in which 

waste ("Muda") such as defective parts must be identified as 

quickly as possible and removed from the production process. 

However, over-engineering should still be avoided [4]. 

One way to meet these requirements for visual quality 

control is the use of artificial intelligence methods. These 

have led to several breakthroughs in recent years, especially 

in the field of computer vision [5]. In this approach we use 

Deep Learning, a sub-area of artificial intelligence [6]. 

However, the scalability requirement of the solution used 

must not only be considered from the point of view of the 

algorithms used. The infrastructure, and especially the 

network of the plant, must also be considered in production 

environments with large data streams. Notably, when using 

high quality video streams producing large amounts of data, 

one must ensure that the network of the plant cannot be 

overloaded. A naïve solution would utilize separate ethernet 

links for each application, however, such an approach requires 

retrofitting each time a new service is added. Alternatively, 

existing plants are retrofitted only once with Time-Sensitive 

Networking (TSN) equipment. 

2.1. Short introduction to SmartFactory-KL 

The SmartFactoryKL as first presented in [7] is a physical 

test-bed for novel production concepts, components and 

technologies for industrial applications and research projects. 

Based on the basic concepts of modularity, flexibility and 

manufacturer independence, this automated production line is 

divided into individual, mutually compatible production 

modules. These production modules are shown in Fig. 1.   

 

 

Fig. 1 SmartFactoryKL Production modules  

All production modules communicate with each other via 

standardized interfaces and communication protocols. High 

value is placed on manufacturer-independent standards such 

as OPC-UA. Thus, the process sequence can be changed 

quickly at any time or new processing steps can be integrated 

into the system and put into operation. This allows a high 

flexibility of the possible products to be manufactured.   

The product to be manufactured is a business card holder. 

These can be individually assembled by the customers via an 

online product configurator and produced in the SmartFactory 

at the push of a button. An RFID chip is mounted in the 

bottom plate of the business card holder, on which all 

production information is stored (the product memory). The 

positions as well as completed machining processes are also 

stored, i.e. a digital twin is updated. RFID readers in each 

production module read out the product memory of the 

individual product to compare whether and which machining 

process must be carried out. 

In addition, IP cameras were installed in each production 

module, which stream the machining process and the products 

within the modules. 

2.2. Deep Learning for Computer Vision 

The identification of surface defects and damage to a 

product plays an important role in the production 

environment. For a long time, this activity was mainly carried 

out manually by the company's employees, and only in the 

case of large batch sizes by automated systems. There it was 

mostly carried out by highly specialized software, which was 

adapted to the individual products with the help of expert 

knowledge. Especially for products with a high variety of 

variants, this form can only be implemented in a very 

complex way, which is why this implementation uses an 

Artificial Intelligence (AI) based form of Computer Vision for 

quality inspection. 

Computer Vision refers to the use of computers and 

cameras to reproduce the human visual apparatus to identify 

objects, objects or other visual features. In recent years, the 

use of Convolutional Neural Networks (CNNs) has led to 

breakthroughs in the accuracy and flexibility of detection [8]. 

For example, by using CNNs, the accuracy of detection in the 

ImageNet challenge on the Top-5 could be increased from 

73,8% to over 84,7% [9]. Current CNN based approaches 

achieve an accuracy up to 96,9% [10]. 

An advantage of Deep Learning-based approaches to the 

application of machine vision over traditional methods is that 

features do not need to be extracted manually [11]. These are 

therefore regarded as end-to-end models and do not require 

domain expert knowledge to be designed for a specific 

application. 

These advantages make CNNs particularly interesting for 

visual quality control [17]. The network design used for the 

application presented in this paper is described in 3.1. 

2.3. Short introduction to TSN 

Time-Sensitive Networking (TSN) is a set of IEEE 802.1 

published base standards and further projects being worked on 
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by the TSN Task Group. Their main goal is to extend the 

nowadays in production extensively used Ethernet standard 

IEEE 802.3 with deterministic properties, such as upper 

latency bounds, low jitter (delay variance) and low packet 

loss.  

These efforts meet many competing solutions (i.e. 

PROFINET, Ethernet/IP, EtherCAT), each realizing 

determinism over Ethernet differently with varying 

requirements. TSN unifies requirements to network 

equipment like switches and end points (i.e. PLCs, sensors, 

actors, cameras, etc.). 

At the time of writing, the IEC/IEEE 60802 TSN Profile 

for Industrial Automation is not yet finished, thus we had to 

choose a suitable subset of standards considering both our 

use-case and supported TSN features by hardware 

manufacturers. 

Switches must support IEEE 802.1Qbv (Time-aware 

scheduler) and IEEE 1588v2 (Precision Time Protocol, PTP) 

allowing to slice the available network bandwidth into 

timeslots to guarantee determinism to important traffic. End 

points must only support PTP to synchronize egress traffic 

with their respective timeslots. A software solution is precise 

enough for our use case. 

3. Exemplary implementation into the SmartFactory 

To meet the requirements listed in Chapter 2, the usage of 

Deep Learning technologies and a set of Ethernet standards is 

proposed. To test their suitability, they will be implemented 

exemplarily in the SmartFactory. For quality evaluation deep 

CNNs are used to continuously perform quality assurance (I) 

and to adapt it easily and flexibly to new products (II). 

Transfer learning [19] is also used for this purpose. TSN is 

used to ensure the reliability (I) and scalability (III) of the 

solution at the network level. 

3.1. Description of the Convolutional Neural Network 

The CNN used in this approach is based on the RetinaNet 

architecture presented in [12], consisting of ResNet-50 [13] 

Feature Pyramid Network shared box predictor with focal 

loss. The architecture of the network is shown in Fig. 2. 

 

 

Fig. 2 One-Stage RetinaNet with ResNet, FPN, and subnetworks for anchor 

boxes [12] 

This network was created using the TensorFlow Library 

[14] and pre-trained over 50,000 steps using the Common 

Objects in Context 14 (COCO14) dataset [15]. On this it 

achieved mean average precision (mAP) of 36.9. This trained 

network forms the basis for our implementation in the demo 

plant.  

To adapt this network to detect the products in the 

production line, transfer learning is used [18]. This is applied 

by using the pre-trained network explained above and 

utilizing the low-level abstractions (such as edges) and 

training mostly the higher-level abstraction levels, such as the 

final object to be detected. This drastically reduces the 

amount of necessary training data which is required for the 

specific application and reduces the training time. 

For this purpose, a further data set of 10 exemplary 

products was prepared, each consisting of 100 images. 

Furthermore, data augmentation in the form of cropping and 

horizontal and vertical flip was applied to a random number 

of images. In addition, a randomly generated noise effect was 

applied to a random selection of images. This data set was 

used to train the network of the COCO14 classification 

checkpoint to adapt it to the specific products. 

Training was performed over 8000 steps on a NVIDIA 

GeForce GTX 1080Ti. From this created model the inference 

graph was exported and executed on a NVIDIA Jetson TX2.  

On this it could evaluate 9 frames per second (FPS).  

3.2. Time-Sensitive Networking 

Fig. 3: Network topology utilizing a shared link 

Shown in Fig. 3 is the relevant network topology. An edge 

device connected via a Hirschmann RSPE 35 TSN switch to 

the Cisco 6050 IP camera streaming at 30 FPS 1080p using a 

priority of 4. Utilizing the OpenCV library single frames of 

the camera stream are grabbed, zoomed into important image 

section and resized to the expected input size for the CNN. 

Afterwards, these single frames are sent to the NVIDIA 

Jetson with a higher priority of 5 of the single shared ethernet 

cable during the assigned timeslot described in Table 1 to 

fulfil the soft real-time requirements of our use case. 

Table 1. Configured gate control list for IEEE802.1Qbv 

Slot description Priorities Interval 

Safety, Network Administration 6, 7 100 µs 

Camera Streams 3, 4, 5 400 µs 

Low Priority (Best Effort, etc.) 0, 1, 2 500 µs 

 

Additionally, both hard real-time traffic (safety) and best 

effort traffic is utilizing the shared network link without any 

disturbances due to the time-aware schedulers of the 

Hirschmann switches. 

We verified the correct operation and scalability by 

overloading the camera timeslot with an UDP flood generated 



 Jens Popper, Carsten Harms, Martin Ruskowski/ Procedia CIRP 00 (2019) 000–000 

by two laptops running the iperf3 tools over the shared link. 

As expected, the higher priority single frames within the same 

timeslot are not affected, because of strict priority-based 

scheduling. The same is true for the other two time slots due 

to time-aware scheduling. Thus, trying to add too many IP 

cameras to the network will only impair the video streams, but 

importantly not the prioritized single frames of each camera 

or any other network services in other time slots. 

3.3. Implemented visual quality control 

The inference graph of the Deep Learning network 

described in 3.1 was implemented in the SmartFactoryKL 

production line. The input for the evaluation of the computer 

vision algorithm is provided by a Cisco CIVS IPC 6050 IP 

camera installed on the top of a production module with view 

on the conveyor belt. The camera stream was then prioritized 

according to the scheduling specified in 3.2 and rescaled to a 

resolution of 640 x 640 pixels. The output of the evaluation 

represents the label about the recognized current processing 

state, which is compared in the system with the expected 

processing state for the respective product. In addition, a 

bounding box is created and placed over the camera stream to 

provide the operator with feedback on the identified products 

for traceability. The output generated in this way is shown in 

Fig. 4 as an example of a correctly and an incorrectly 

manufactured product.  

 

 

Fig. 4 Recognized process step of the product: correct (left) and incorrect 

(right) 

4. Conclusion 

In this paper a concept and a technical implementation of a 

Deep Learning based visual quality control is presented. By 

using pre-trained Deep Learning networks and transfer 

learning a high accuracy of the recognition is achieved and 

the number of required training images could be massively 

reduced, which enables a fast implementation and makes such 

an automatic recognition feasible even for very small lot 

sizes. The application and adaption to new products and new 

varieties is easy to do, which should enable even smaller 

companies without expert staff to implement and maintain 

these systems. 

Using TSN switches and synchronizing an edge device 

within microseconds to the network time is sufficient to 

guarantee determinism required for reliable and continuous 

visual quality control. However, the manual configuration of 

the network is error prone and tedious. 

We are aware of the future TSN “flow” concept [16] from 

talker to (multiple) listeners as well as an automatic schedule 

configuration via a central network controller (CNC); 

unfortunately, this functionality was not yet available for us. 

We strongly believe that these are necessary for practical 

implementation in future manufacturing plants. 
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