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Abstract— We propose a two-phase programming by demon-
stration (PbD) framework, which enables fast deployment
of complex bi-manual assembly tasks. The first phase is a
pre-learning phase, where the robot observes multiple task
demonstrations performed by humans. Applying motion seg-
mentation, it builds a rough plan of the task to be accomplished.
Next phase is the policy refinement with incremental learning,
performed by the kinesthetic guidance of the robot. In this
phase, the robot already knows the rough task plan, so it can
actively follow the pre-learned trajectories. The operator can
arbitrarily modify the execution speed by simply pushing the
robot along the demonstrated trajectory. Moreover, it can drive
the robot forward and backward, and incrementally modify
only those parts of the trajectory that need the refinement.
During this phase, the robot estimates also the interaction
forces and environmental compliance, which is needed for
a robust and stable accomplished of assembly tasks in the
exploitation phase. The benefit of this framework is in improved
learning efficiency since the operator can concentrate only on
the fine adjustment of the pre-learned trajectory. The robot
optimizes its configuration from the data obtained in the pre-
learning phase, which substantially facilitates the learning of
kinematic redundant mechanisms and learning of bi-manual
robot mechanisms. The proposed scheme was validated in a
task where a bi-manual robot composed of two Kuka LWR-4
robot arms performs an assembly task.

I. INTRODUCTION

Fast deployment of robot programs is one of the challenges
of contemporary robotics, which addresses both robots in
production lines as well as the service and humanoid robots
in our home environments [1]. The ultimate goal is to enable
an inexperienced operator to efficiently generate complex
robot actions in a human-friendly way. One of the most
successful paradigms towards this goal is the Programming
by Demonstration (PbD), referred to also as the imitation
learning [2]. It involves many aspects beyond a simple
copying of human demonstrated motions, such as context
understanding, generalization to different contexts, capturing
and interpretation of interaction forces and compliance, etc.
[3], [4]. Due to its simplicity, predictability, and ability to
learn difficult dynamic tasks in reasonable amounts of time,
this is a promising route to equip robots with necessary
functionalities for performing a large variety of tasks, ranging
from the classical industrial production tasks to the applica-
tions in households, stores, hospitals, etc. This is why PbD
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is still one of the most intense research topics in the field of
robotics.

Our research focuses on PbD of assembly operations,
where the robot passes from an unrestricted movement to
the movement in a contact with the environment. For the
stable operation, the robot should fulfill position and force
constraints arising from the environment [5]. The impedance
control is generally accepted paradigm for providing intrin-
sically safe robot actions while interacting with the envi-
ronment [6]. However, it requires at least an approximate
model of the environment in order to appropriately set the
control parameters. In order to accomplish an assembly
operation, we have to define robot poses, forces and torques
and determine the required impedance parameters. During
the kinesthetic guidance, forces and torques can be accurately
obtained by reading robot sensors, while the determina-
tion of the impedance parameters is more challenging. The
problem with kinesthetic guidance is how to accurately
demonstrate the required task since the operator has to
manually guide gravity compensated robot arm to perform
the desired task while avoiding singularities, joint limits
and resolving kinematic redundancies. Even with multiple
demonstrations, it is not trivial to accurately define com-
plicated motion parameters at the required speed. Some of
the above-mentioned problems can be solved from multiple
visual observations of humans performing the desired task.
After capturing the human motion, the robot builds the
model of the task and optimizes its motion taking into
account the joint limits, singular configurations, and kine-
matic redundancies [7]. However, the problem of how to
model the task with the desired accuracy required for the
assembly operations and how to capture interaction forces
and torques beside the task impedance parameters remains.
By joining both approaches, we can benefit from advantages
of both worlds, which are: the ability to globally model and
optimize the task from visual observations and the ability
to precisely capture the motion and force/torque parameters
during the kinesthetic guidance. This joined approach was
applied in the work of Lee and Ott [8], where the robot
incrementally refines the initially demonstrated motion by
kinesthetic guidance using the concept of the refinement
motion tube [9]. The motion tube determines the range of
allowed deviations from the nominal path within which the
operator can modify the path. From previous demonstrations,
they calculated the covariance matrix of the spatial part of the
nominal trajectory and associated it with the robot controller
impedance parameters. The Gaussian mixture model (GMM)



and the Gaussian process regression (GPR) was used to
decouple the spatial part from the temporal part of the
trajectory. The idea of the refinement tube was used also for
the bi-manual human-robot cooperation scheme, where the
Dynamic motion primitives (DMP) were used to encode the
nominal trajectory [10]. Motion refinement tube was defined
regarding the Frenet-Serret (FS) frame and the decoupling
from the synchronization between the spatial and temporal
part of the trajectory was accomplished by projecting the
actual velocity to the FS frame and adjusting the DMP speed
scale factor.

In this work, we apply previously presented framework to
robot learning and we propose modifications, that allow an
efficient and simple PbD of assembly tasks. We demonstrate
the benefits of the proposed approach on a representative
bi-manual assembly operation.

The paper is organized into 6 sections. In the next sec-
tion, we briefly describe learning from observation (LfO)
framework, where we generate nominal bi-manual trajectory
from multiple demonstrations and encode it with DMPs. Our
approach to the refinement of the nominal trajectory with
kinesthetic guidance is presented in section III. In section
IV we tackle few issues related to the bi-manual execution
of assembly tasks. The whole framework was experimentally
verified in a generic bi-manual assembly task, described in
section V. Final conclusions and possible future extensions
are discussed in section VI.

II. LEARNING FROM OBSERVATION

In this section, we describe the first phase of the over-
all PbD procedure. The movement of both hands of the
demonstrator during the execution of the desired task was
captured by Kinect motion tracker, as shown in Fig. 1.
Next, joint angles Θi,j,k ∈ R4×2×k were mapped to the

Fig. 1. The robot observes human wile performing a bi-manual operation.

Cartesian coordinates
[

p
q

]
j,k

∈ R7×2×k expressed in a

common base coordinate system using the human kinematic
model [11], where index i denotes the joint of the human

arm, j = {1, 2} the left or the right arm, and index k the
time sample. Vector p ∈ R3 denotes the position vector
and q ∈ S3 describes the orientation quaternion. Cartesian
positions of the right and the left robot were further mapped
to the relative and the absolute coordinates of the bi-manual
robot using the following transformations

pa =
1

2
(p1 + p2), (1)

qa = q1 ∗ qk21(ϑ21/2), (2)
(0,pr) = q̄a ∗ (0,p2 − p1) ∗ qa (3)

qr = q̄1 ∗ q2, (4)

where pa,pr ∈ R3 are the absolute and relative position
vectors and qa, qr ∈ S3 are the absolute and relative
orientation quaternions. q̄ denotes conjugate quaternion and
operator ∗ denotes quaternion product. qk21

is the unit
quaternion calculated as

qk21
=

(
cos

(
ϑ21
4

)
,k21 sin

(
ϑ21
4

))
, (5)

where k21 and ϑ21 are the axis and angle that realize the
rotation q1 to q2.

Our framework applies the control in the task coordinates.
This is necessary because we have to provide the desired
robot compliance in task coordinates, which is more appro-
priate for performing precise assembly operations. Therefore,
the singularity and joint limit avoidance will be performed in
real time during the task execution, exploiting the kinematic
redundancy of bi-manual robot. However, it is very important
to choose an appropriate initial robot configuration, which
assures that the local optimization will result in a feasible
trajectory. The appropriate initial robot configuration is de-
termined iteratively by a global optimization procedure [12].

We encode absolute and relative coordinates (1)-(4) in a
more compact parametric representation, which allows us to
store lengthy demonstration with a limited set of parameters.
For this, we rely on the motion representation with dynamical
motion primitives (DMPs) [13], extended for Cartesian space
movements [14]. For the accomplishment of our PbD frame-
work, we need to variate the speed of movement in a non-
uniform way without changing the course of the movement.
A suitable representation is Speed-Scaled Dynamic Motion
Primitives (SS-DMPs), which we originally developed in
[15]. Positions p and orientations q are generated by the
following system of nonlinear differential equations 1

ν(x)τ ż = αz(βz(gggp − p)− zzz) + fp(x), (6)
ν(x)τ ṗ = zzz, (7)
ν(x)τη̇ηη = αz (βz2 log (gggo ∗ q)− ηηη) + fo(x), (8)

ν(x)τ q̇ =
1

2
ηηη ∗ q, (9)

ν(x)τ ẋ = −αxx. (10)

where x is the phase variable and zzz and ηηη are auxiliary
variables. The system (6) – (10) converges to the unique

1for the sake of simplicity we omit the subscripts (.)a and (.)r



equilibrium point at p = gggp, zzz = 0, q = gggo, ηηη = 0, and
x = 0 providing properly chosen αz and βz [14]. By setting
αz = 4βz > 0 and αx > 0, the underlying second order
linear dynamic system becomes critically damped.

The quaternion logarithm log : S3 7→ R3 defined as

log(q) = log(v,u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (11)

maps the quaternion describing the rotation between the goal
and current pose to the rotation error vector. Its inverse
transformation is defined as

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

1 + [0, 0, 0]T, otherwise.

(12)

The nonlinear forcing terms fp(x) and fo(x) are formed in
such a way that the response of the second-order differential
equation system (6) – (10) can approximate any smooth
point-to-point trajectory from the initial position ppp0 and
orientation qqq0 to the final position gggp and orientation gggo. They
are defined as linear combinations of radial basis functions
(RBFs)

fp(x) =

∑N
i=1 wi,pΨi(x)∑N

i=1 Ψi(x)
x, (13)

fo(x) =

∑N
i=1 wi,oΨi(x)∑N

i=1 Ψi(x)
x, (14)

Ψi(x) = exp
(
−hi (x− ci)2

)
, (15)

where free parameters wi,p, wi,o determine the shape of the
position and the orientation trajectory. Centers ci of RBFs
with widths hi are evenly distributed along the trajectory.

The temporal scaling function ν(x) determines variations
form the demonstrated speed profile and allows to specify
non-uniform speed changes along the demonstrated trajec-
tory. Similarly to the forcing terms (13) and (14), it is
encoded as a linear combination of RBFs

ν(x) =

∑M
j=1 vjΨj(x)∑M
j=1 Ψj(x)

, (16)

where vj are the corresponding weights.
In order to parameterize the demonstrated control policy

with a DMP, the weights wwwi,p wwwi,o and vj need to be
calculated. The shape weights wwwi,p and wwwi,o are calculated
by applying standard regression techniques [14] using the
demonstrated trajectory, which was previously transformed
to absolute and relative coordinates. For ν we initially set
such vj that ν(x) = 1 ∀x, meaning that the demonstrated
speed profile remains as demonstrated.

III. INCREMENTAL TASK REFINEMENT BY KINESTETIC
GUIDANCE

Kinesthetic guidance involves guiding the robot in the
active gravity compensation mode [16]. The essence of our
approach is to allow a free motion of the robot backward

and forward along the nominal trajectory and to modify
only a chosen part of the trajectory. The motion back and
forward along the nominal trajectory can be easily performed
applying DMP framework and changing the speed scaling
factor ν. Namely, when ν < 0 the robot moves backward
along the nominal trajectory2, stands steel when ν = 0, and
moves forward along the nominal trajectory when ν > 0. The
most intuitive guidance is to apply the force in the desired
direction of the motion along the nominal trajectory. Let
assume that our robot is impedance controlled in Cartesian
coordinates, where K ∈ R6×6 and D ∈ R6×6 are the
proportional and derivative controller gain matrices, not
necessarily diagonal. Then, the Cartesian force and torque
applied to the robot end-effector can be calculated simply
by [

F(x)
M(x)

]
= K

[
pn(x)− p(x)

log(qn(x) ∗ ¯q(x))

]
+

D

[
ṗn(x)− ṗ(x)
ωn(x)− ω(x)

]
, (17)

where ω denotes angular velocity, calculated from two subse-
quent quaternions. Subscript (.)n denotes nominal trajectory,
obtained with LfO as described in section II. Now, define the
direction of the translational motion as the tangential axis of
the Frenet-Serret frame [17], (see Fig. 2), t(x) = ṗn(x)

‖ṗn(x)‖ ,

and the robot tool rotation vector s(x) = ωn(x)
‖ωn(x)‖ , where ω

are current robot commanded velocities. Speed scaling factor
can be then determined as

ν(x) = k1(F(x) · t(x)) + k2(M(x) · s(x)), (18)

where (·) denotes dot product and k1, k2 are positive scalars,
which scale the velocity of the motion along the nominal
trajectory. If we apply this ν to the set of equations (6–10),
the robot moves in the tube along the nominal trajectory, as
illustrated in Fig. 2. The axes of the ellipse, which define
the refinement tube, depend only on applied force/torque
and the robot impedance along the normal n and binormal
b axes of the Frennet-Serret frame. New robot positions
and orientations have to be sampled at exactly the same
phase as the nominal trajectory and saved as new modified
trajectory. In the work of Lee and Ott [8] and in our previous
work [10] the robot impedance was calculated according to
the covariance matrix that describes the expected deviations
around the nominal trajectory. In this work, we relax this
requirement and keep impedance (defined with the robot
control gains) fixed during the kinestetic guidance. It might
happen that this fixed impedance does not allow to modify
the trajectory for the desired displacement. We override this
limitation by letting the user modify the nominal trajectory
in multiple passes. One can simply push the robot back and
at the next change of the motion direction, new nominal

2Note that DMP is a dynamical system, which becomes unstable for
negative ν. In this case we apply another DMP, learned for the time reversed
trajectory p(t) = p(τ − t) and q(t) = q(τ − t)
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Fig. 2. The figure illustrates the refinement tube (denoted with ellipses)
during the kinestetic guidance around the nominal trajectory (denoted with
red curve). Applied force moves the robot along the nominal trajectory,
while the displacement depends on forces orthogonal to t and robot stiffness
in these directions

trajectory is calculated as

pn,l+1(x) = ζ∆p(x) + pn,l(x), (19)
∆p(x) = pn,l(x)− p(x),

qn,l+1(x) = exp

(
ζ
ωωω(x)

2

)
∗ qn,l(x), (20)

ωωω(x) = 2 log(qn,l(x)) ∗ q(x),

where subscript l denotes the learning cycle index and
0 ≤ ζ ≤ 1 is the weighting factor that defines the update
rate. If we set ζ = 1, new nominal trajectory pn,l+1 is
equal to the measured trajectory p. On the other hand, if we
set ζ = 0, the nominal trajectory pn,l+1 does not change.
After each learning cycle as well as after each motion
direction change, the updated nominal trajectory pn,l+1 is
encoded into SS-DMP. It is used as a command trajectory
to control the robot in the next cycle. The cycle counter
is incremented whenever the operator changes the direction
along the nominal trajectory. The number of cycles in not
limited, we can modify any part of the trajectory and the
length of the modified trajectory can vary freely from cycle
to cycle, which makes this type of learning very intuitive and
efficient at the same time.

The above procedure describes the task refinement for a
single robot arm. For the dual-arm implementation, we have
to assure that both robots are using a common speed scaling
factor ν(x). This means, that when we move one robot along
the nominal trajectory, the other has moved as well. The
trajectory adjustment is performed regarding the nominal
trajectory of each robot independently and not in absolute
and relative coordinates because this is more intuitive for
the user. Task coordinates of each robot are obtained from
the absolute and relative coordinates by inverting relations
(1–4). Note that this transformation is unique and always
exits. After calculating the update according to (19–21) for
each robot arm independently, we calculate the new nominal
absolute and relative trajectory at phase x using (1 – 4).
In this way, we obtain a very intuitive way of changing
absolute and relative part of the task. If we move just one
robot or when we move both robots in opposite directions,
we modify relative position coordinates. When we move

both robot arms in the same direction, we modify absolute
positions. Similarly, we modify the absolute and relative
orientations. Please note that this refers to the moving of
robot orthogonal to the tangential vector t, since movement
along the t immediately changes the phase (10).

The last phase of learning is actual speed learning. Once
we are satisfied with the trajectory, we push the robot from
the start to the trajectory end with the desired speed, capture
ν(x) and calculate weights vj , which encode ν(x) as a linear
combination of the RBFs (16). Note that nothing restricts this
motion to be only in the direction of the nominal trajectory.
We can freely demonstrate such ν(x) which goes forward
and back along the nominal trajectory. In this way, we can
efficiently program quasi-periodic motions and encode tasks
like sawing, polishing, wiping, material tooling, etc. with a
minimal number of parameters.

A. Determination of the Task Constraints

Task constraints relate to the forces acting on each robot
as a consequence of a bi-manual operation and interaction
with the environment. We assume that the forces and torques
can be measured with a force/torque sensor, usually mounted
on the robot wrist. Force readings, mapped to the tool center
point of the robot and expressed in the common base, are
denoted as F̃1, M̃1, F̃2, M̃2 for the first and the second
robot, respectively. The corresponding forces and torques
expressed in the absolute and relative coordinates are

(0,Fa) = q̄1 ∗ (0, F̃1) ∗ q1 + q̄2 ∗ (0, F̃2) ∗ q2, (21)
(0,Ma) = q̄1 ∗ (0, M̃1) ∗ q1 + q̄2 ∗ (0, M̃2) ∗ q2, (22)

(0,Fr) = q̄a ∗ (0,
F̃1 − F̃2

2
) ∗ qa, (23)

(0,Mr) = q̄a ∗ (0,
M̃1 − M̃2

2
) ∗ qa, (24)

We assume that the robot is interacting with the environment
only through the manipulated object. Our goal is to determine
the effective compliance, which unifies tool and environment
compliances, expressed in absolute and relative coordinates
of a bi-manual robot, as illustrated in Fig. 3. In this work we
assume a simple model of the effective positional compliance
[18]

Fa = Σa(pa − p0,a), Fr = Σr(pr − p0,r), (25)

where p0,a and p0,r denotes the estimated contact posi-
tion [19] in absolute and relative coordinates, respectively.
Σa ∈ R3×3 and Σr ∈ R3×3 are the effective absolute and
relative diagonal stiffness matrices. Note that the compliance
in absolute and relative coordinates are robot configuration
dependent. For an example, consider the situation shown in
Fig. 3. When both tubes are aligned, the relative motion along
the tube (denoted with relative y coordinate) is enabled,
constrained only by the friction force. According to the
model (25), Σr,y changes and becomes low. Obviously, we
can model the effective compliance as a phase dependent
parameter. It can be estimated from the past L sampled data
using weighted least squares, where we assign lower weights



Fig. 3. The relative and absolute effective compliance schematically
represented as springs. Relative compliance equals to the manipulated
object, while the absolute one is composed of the environment and object
compliance.

to the past data samples. i-th component can be estimated
form 3

X =


pr,i(x)− p0,r,i
pr,i(x1)− p0,r,i
. . .
pr,i(xL)− p0,r,i

 ,Y =


fr,i(x)
fr,i(x1)
. . .
fr,i(xL)


[

Σr,p,i(x)
]

= (XTWsX)−1XTWsY,

where x denotes the current phase, xL phase at L-th previous
sample and Ws ∈ RL×L is the diagonal matrix with variable
weights ws(xi) = αsws(xi−1), αs < 1. The estimated
environment and the tool compliance parameters together
with the measured absolute and relative forces and torques
are encoded with RBFs after the accomplishment incremental
task refinement. The will be used to adapt the impedance
control law, described in the next section.

IV. IMPEDANCE CONTROL OF BI-MANUAL ASSEMBLY
TASKS

Impedance control is very appropriate for the assembly
operations, as it provides stable operations in contact and not
contact motions and transitions between the two [20]. Here,
we briefly present impedance control for a bi-manual robot,
which provides tracking of the commanded control variables
obtained by the proposed kinestetic guidance. Commanded
pa,d, qa,d, pr,d, qr,d, Fa,d, Ma,d, Fr,d and Mr,d are in our
scheme obtained with DMP and RBF integration as described
in section II

For a bi-manual robot control, we have to map the nominal
relative and absolute task coordinates to the corresponding
joint coordinates of both robots, denoted with θθθ = [θθθ1 θθθ2]T ∈
R(N1+N2), where N1 and N2 are the numbers of joints of the
first and the second robot, respectively. This transformation is
obtained through relative and absolute geometrical Jacobian,

3For the sake of simplicity, the estimation procedure is explained only for
the relative coordinates. Absolute are estimated in exactly the same way.

which maps the corresponding translational and angular
velocities to the joint velocities[

ṗr

ωr

]
= Jrθ̇θθ ,

[
ṗa

ωa

]
= Jaθ̇θθ. (26)

Absolute Jacobian is obtained from the time derivative of
(1–4), yielding [21]

Ja =
[

1
2J1

1
2J2

]
(27)

Jr =

[
Ra

T 0

0 Ra
T

] [
−(J1,p + Λ

J1,ω

2 ) J2,p + Λ
J2,ω

2 )
−J1,ω J2,ω

]
,

where Λ = ST (p2 − p1) and Ra is the rotation matrix
representation of the quaternion qa. Ji,p and Ji,ω denote the
positional and rotational part of the geometrical Jacobian of
the i-th arm, respectively. S represents the well know skew-
symmetric matrix.

To control both absolute and relative coordinates, we
define extended task coordinates xe = [pT

a qT
a pT

r qT
r ]T and

extended velocities ve = [ṗT
a ωT

a ṗT
r ωT

r ]T and extended
Jacobian Je = [JT

a JT
r ]T . The impedance control of a bi-

manual robot is accomplished with

ρ=HeJ
+
e (ẍc − J̇eθ̇θθ) + he + HeNeξ + JeFe, (28)

v̇c = v̇n + Dėe + Kee + Kf (Fe,d − Fe), (29)

ξ=Kn(θ̇θθ0 − θ̇θθ) (30)

where ρ ∈ RN1+N2 are commanded motor torques, He ∈
R(N1+N2)×(N1+N2) =

[
H1 0
0 H2

]
is the extended block di-

agonal inertia matrix, H1 and H2 are inertia matrices of
the first and the second robot, he ∈ RN1+N2 are Coriolis,
centrifugal and gravity forces, Ne ∈ R(N1+N2)×(N1+N2)

is the null space projection matrix and Fe ∈ R12 =
[FT

a MT
a FT

r MT
r ]T is the vector of absolute and rela-

tive forces and torques. Fe actually describes the coupling
forces of both manipulators when acting on the same object.
K,D ∈ R12×12 are positive definite block diagonal matri-
ces of proportional and derivative gains, respectively4, and
Kn ∈ R(N1+N2)×(N1+N2) is the positive definite diagonal
matrix containing gains of the simplified null-space velocity
controller [22] and Kf ∈ R12×12 is the force feedback
gain matrix. J+

e is the Moore-Penrose pseudo-inverse of
the extended Jacobian Je, ee ∈ R12 is the error between
the nominal and actual measured extended task coordinates,
calculated as

ee =


pa,n − pa

log(qa,n ∗ q̄a)
pr,n − pr

log(qr,n ∗ q̄r)

 , (31)

v̇n ∈ R12 are the nominal (desired) extended accelerations
and ėe ∈ R12 are errors between the nominal and actual
extended velocities. Vector θ̇θθ0 ∈ R(N1+N2) is an arbitrary
vector of joint velocities that is projected in the null-space

4composed of blocks of 3×3 matrices, which are not necessarily diagonal.
Non-diagonal gain matrices enable to specify the direction of the robot
stiffens and damping.



of the primary task. It is chosen in such a way that the robot
avoids joint limits and singular configurations [23]. Note
that the dimension of the extended task defined with xe can
be ≤ 12, which allows exploiting the additional degrees-
of-redundancy for the secondary task(s). In many cases,
particularly for the bi-manual assembly, absolute coordinates
might not be relevant. In such a case, the robot exploits the
additional degrees-of-redundancy, which generally results in
a more optimal policy in the configuration space. However,
for the assembly, there are often situations where absolute
coordinates are not important only for a certain part of
the task. The problem is how to smoothly transit between
the parts, where both absolute and relative coordinates are
relevant and the parts, where only the relative coordinates
are relevant. The appropriate solution was inspired by the
work of Chiaverini et. al [24], where they introduced the
user-defined accuracy based on the weighted damped least-
squares. This allows discriminating between directions in
the end-effector space where higher accuracy is desired
and directions where lower accuracy can be tolerated. A
similar procedure was applied to the absolute and relative
coordinates by redefining the extended Jacobian as Je =
[WaJa Jr]T and calculating J+

e as the inertia weighted
damped pseudo-inverse of the Jacobian in the form

J+
e = H−1e JT

e (JeH
−1
e JT

e + Iλ)−1, (32)

where Wa ∈ R6×6 is a diagonal weighting matrix with
weights wa defining the importance of the corresponding part
of the absolute task, I ∈ R12×12 is the identity matrix and λ
is a positive scalar close to 0, which prevents to generate
high velocities in near-singular configurations. Setting all
weights in Wa to zero results in the execution of the relative
task only. Note that very low values of weights are needed
to enable execution of the absolute task also. A numerical
problem might arise at weights values close to zero. We
achieved numerical stability by weighting also the absolute
part of the tracking error in (31) with wa.

During the assembly process, the robot should automati-
cally adjust its compliance according to the task constraints
gathered during PbD. Let consider a simple one-dimensional
case as shown in Fig. 4. From the force equilibrium we can

Fig. 4. A simple model of the robot interacting with the environment. F is
the disturbance force acting at the robot end effector, x̃ is the displacement
due to this force, and K and Σp are the robots and the environment stiffness,
respectively.

get

(K + Σp) =
F

x̃
= κ. (33)

The term κ denotes target stiffness, which defines how much
will the robot deviate from the commanded position when
we apply a disturbance force F . This target stiffness is a
design parameter, that we will set and keep constant for the
entire task. It enables to set the controller parameters K from
the estimated environment stiffness as

Ka,i = κ− Σa,i

Kr,i = κ− Σr,i,

assuming that the estimated environment stiffness is below
the desired target stiffness. If this is not the case, Eq. 34
results in negative gains K; we set the Ka,i, Kr,i to a small
positive value making the robot very complaint. According
to this simple method, the robot will be compliant in the
directions constrained by the environment and vice versa,
stiff in unconstrained directions.

V. EXPERIMENTAL VERIFICATION WITH A GENERIC
BI-MANUAL ASSEMBLY OPERATION

The proposed framework was verified on a bi-manual
setup consisting of 1 d.o.f torso, two Kuka LWR-4 7 d.o.f
robot arms equipped with Barret hands and ATI force-torque
sensors and Kinect-2 RGBD camera, as seen in the Fig.
5. The control algorithms were implemented on xPCTarget
Simulink running at a frequency of 2KHz, which commu-
nicated with the LWR-4 control computer at 500Hz via
Fast Research Interface. The kinesthetic learning algorithms
were implemented in Matlab at 50Hz. For the performance

Fig. 5. Experimental setup

evaluation, we selected a generic assembly task, composed
of two Peg-In-Hole (PiH) operations, one in relative and the
other in absolute coordinates. The robot had to assemble
two parts of the vacuum cleaner tube and release it on
the pedestal. The initial task demonstration was performed
by a human, where the joint angles of both human arms
were tracked with Kinect-2. Joint angles were mapped to the
Cartesian coordinates and further to the absolute and relative
task of the bi-manual setup, as explained in section II. As
the Kinect tracker is not capable to track the demonstrator’s
motion with the precision required for the assembly opera-
tion, the demonstrated policy needed additional refinement.



For this, we applied the framework presented in section III,
where we iteratively refined primarily both PiH operations.
The scalar ζ in Eq. (19), (21) was set to 0.8 during the
refinement. The robot stiffness during the task refinement
was set to 500N/m and 300Nm/rd for positional and
rotational task coordinates of both robot arms, respectively.
The last procedure of the refinement was the demonstration
of the desired velocity profile. In this phase, we were pushing
the left robot arm along the refined nominal trajectory in the
relative and absolute coordinates with the desired velocity
profile, shown in Fig. 6. In this phase, we estimated also the
effective environment stiffness, as described in subsection
III-A. The estimated effective stiffness parameters during the
relative peg-in-hole part of the task are shown in Fig. 7. Note
that it is important to push at the robot at the wrist and not
at the robot end effector in order to get non-biased force
reading of the ATI force sensors.
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Fig. 6. Smoothed velocity scaling factor, which was demonstrated at the
end of the incremental task refinement.
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Fig. 7. Measure relative forces and estimated relative stiffness during the
relative peg-in-hole operation. Relative direction y is in the direction of the
peg insertion, where the robot estimated low stiffness. Note also that the
initially estimated stiffness in x coordinate was also low, as the interaction
forces in this direction were initially very low.

For playback, we switched to the bi-manual impedance
control, as described in section IV. We set the target stiffness
parameter κ to 1000N/m and limited the minimal robot
stiffness to 100N/m for all positional coordinates. In this
experiment, we adjusted only the positional part of the robot
stiffness in relative and absolute coordinates according to
(34). Initial environment stiffness was set to zero. Therefore,
the robot was initially stiff in all coordinates, which assured
the precise tracking of the demonstrated trajectory. During
the PiH in relative coordinates, the robot lowered the stiffness

to the minimal stiffness in x and z relative coordinates,
while the stiffness along the axis of insertion y remained
at a relatively high value of approx. 750N/m. We set also
the initial values of the Wa matrix to 0, which means, that
the robot executed only the relative part of the task, while
the redundancy resolution minimized kinetic energy during
the motion. Therefore, the actual robot motion in absolute
coordinates was different from the one demonstrated. Intu-
itively, we increased the weights of Wa prior an absolute
force was detected, indicating that the robot interacts with
the environment and that the absolute coordinates become
important. The robot performed a smooth transition from
the part of the task, where only the relative coordinates were
relevant to the part of the task, where the robot precisely
tracked also the absolute coordinates. This can be seen from
the measured joint velocities of both robots, plotted in Fig.
8. From Fig. 6 we can see that in most parts of the trajectory
we could increase the velocity of the task execution. It was
necessary to decreased it only for the peg insertion in order
to increase the reliability of the whole assembly task.
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Fig. 8. Measured joint velocities of the left and the right robot, respectively.
Note smooth joint velocities during the transition between the execution of
the task using relative coordinates only to the task where both relative and
absolute coordinates matter.

VI. CONCLUSIONS

In the paper, we presented an effective framework for
the fast deployment of robot assembly tasks. It is particu-
larly effective for bi-manual learning. However, it can be
efficiently used also for single arm tasks, as substantially
decrease the time for preparing a new robot application with
less experienced robot operators. Therefore, we see possible
applications of the proposed learning framework in low-
batches SME production lines and for humanoid and service
robots performing in our home environments. The framework
exploits the impedance properties of the robot manipulator.
It can be adapted also to the traditional stiff robot arms
equipped with a force/torque sensor mounted in the robot
wrist. However, the performance would be degraded while
interacting with the stiff environment. Future work involves



testing in more complex assembly tasks and implementation
of the proposed framework for the full-sized humanoid robot
Talos.
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