
Deep Encoder-Decoder Networks for Mapping Raw Images to Dynamic
Movement Primitives

Rok Pahič1,2, Andrej Gams1, Aleš Ude1,2, and Jun Morimoto2

Abstract— In this paper we propose a new approach for
learning perception-action couplings. We show that by collect-
ing a suitable set of raw images and the associated movement
trajectories, a deep encoder-decoder network can be trained
that takes raw images as input and outputs the corresponding
dynamic movement primitives. We propose suitable cost func-
tions for training the network and describe how to calculate
their gradients to enable effective training by back-propagation.
We tested the proposed approach both on a synthetic dataset
and on a widely used MNIST database to generate handwriting
movements from raw images of digits. The calculated move-
ments were also applied for digit writing with a real robot.

I. INTRODUCTION
Autonomous cognitive robots are expected to be able

to perceive their environment and interact with the exter-
nal world. This makes it necessary to provide them with
a framework that combines perception and action. Many
different approaches that combine perception and actions
have been proposed in the literature, such as for example
object-action complexes (OACs) [1], which is a grounded
representation that binds objects, actions, and attributes in
a causal model. The main feature of OACs is that they
join perception-action space of an agent with its planing
/ reasoning capabilities. However, the learning of effective
perception-action couplings remains a difficult problem.

In recent years deep neural networks have been applied
to various fields with significant success [2], e. g. in visual
recognition tasks and in natural language processing. The
ability of deep neural networks to learn highly nonlinear
transformations between the input and output data makes
them a good candidate for learning direct perception-action
couplings. Consequently, deep learning is a quickly growing
research area in robotics, where it has been shown that
it is suitable for learning end-to-end visuomotor policies
that require close coordination between vision and control,
such as screwing a cap onto a bottle [3]. Deep Bayesian
convolutional neural networks have been applied to estimate
the model’s relocalization uncertainty and improve state of
the art localization accuracy [4]. In yet another work, a deep
convolutional autoencoder network that extracts images fea-
tures and a fully connected deep time delay neural network
that learns the dynamics of a robot task process have been
proposed and tested in the context of object folding [5].

Published in: IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, pp. 5863-5868, 2018.

1Dept. of Automatics, Biocybernetics, and Robotics, Jožef
Stefan Institute, Ljubljana, Slovenia rok.pahic@ijs.si,
andrej.gams@ijs.si, ales.ude@ijs.si

2ATR Computational Neuroscience Laboratories, Kyoto, Japan
xmorimo@atr.jp

bottleneck –
latent space

encoder

decoderinput
data

output
parameters

Fig. 1. An example encoder-decoder network architecture with five hidden
layers

We are interested to apply deep neural networks in the
context of imitation learning. Previous works have shown
that autoencoders [6] or variational autoencoders [7] can be
used to reduce the dimensionality of the movements obtained
by human demonstration and effectively train dynamic move-
ment primitives in a low-dimensional latent space. In these
works, the training data were acquired either synthetically
or by motion capture. Deep autoencoders have also been
shown to significantly outperform other technologies, e. g.
principal component analysis, in computing low dimensional
latent spaces from raw character images [8]. A shift invariant
autoencoder was developed [9] to extract a typical spatial
subpattern independent of its relative position in an image.

Our focus is on learning direct mappings between images
and actions. So instead of autoencoder networks, we are
interested in encoder-decoder networks, where transforma-
tion and generalization of the incoming image data into
the output robot actions occurs through a low-dimensional
latent space. Encoder-decoder networks in combination with
convolutional layers have proven to be useful in computer
vision. One of the best known examples is SegNet deep con-
volutional encoder-decoder architecture for semantic pixel-
wise segmentation [10]. A similar architecture have proven to
be successful at object contour detection [11]. Convolutional
neural networks have also been employed to generate task
parametrized dynamic movement primitives [12].

Unlike the above-mentioned encoder-decoder networks,
which convert raw images into another pixel-wise image
representation, in this work we investigate the conversion
of raw images into movements associated with the images.
As a practical example we consider the problem of re-
producing handwritten digits, i. e. we propose to train an
encoder-decoder network which calculates a movement that
generated a handwritten digit directly from its image. Other

possible applications of our work are discussed in Section
VI, Conclusions and future directions.

II. DEEP ENCODER-DECODER NETWORKS
As autoencoders have shown good performance for the

calculation of low-dimensional latent space representations
of human movements [6], [7] as well as for the reproduc-
tion of images of handwritten characters [8], and encoder-
decoder networks have shown to be useful for converting raw
images into different image representations, we designed our
architecture for decoding movements from images as a fully-
connected encoder-decoder architecture. A simple example
encoder-decoder network is shown in Fig. 1.

Much larger networks than the one shown in Fig. 1 were
used in our experiments, where typically an input layer
consisted of 1600 neurons, there were 7 hidden layers with
1500, 1300, 1000, 600, 200, 20, and 35 neurons, respectively,
and the output layer consisted of 55 neurons. As shown
in [8], fully connected autoencoders work well for hand-
writing images with simple backgrounds, therefore we did
not integrate convolutional layers into the proposed network
architecture. But this is certainly an option, especially once
images with more complicated backgrounds start being used
as input data.

We use the following input-output couples for training of
the above-described network:

D = {Cj ,Mj}Mj=1 , (1)

where M is the number of training couples, Cj 2 RH⇥W

are the input images of width W and height H , and Mj the
corresponding movements associated with each image, i. e.

Mj = {yi,j , ti,j}Tj

i=1 . (2)

Here yi,j 2 Rd are the vectors describing the movement’s
degrees of freedom, e. g. Cartesian positions or joint angles,
ti,j 2 R the measurement times for the j-th movement, and
d is the number of degrees of freedom.

III. TRAJECTORY REPRESENTATION BY
DYNAMIC MOVEMENT PRIMITIVES

As explained above, each image in the database is asso-
ciated with the corresponding movement that created it. An
effective movement representation for both learning and con-
trol are dynamic movement primitives (DMPs) developed by
Ijspeert et al. [13]. Let’s denote a time-dependent movement
trajectory as y(t) 2 Rd. A DMP specifying this trajectory is
given by the following system of differential equations

⌧ ż = ↵z(�z(g � y)� z) + diag(g � y0)F(x), (3)
⌧ ẏ = z, (4)

where y0 2 Rd is the initial position on the trajectory, g 2
Rd the final position on the trajectory, diag(g�y0) 2 Rd⇥d

a diagonal matrix with components of vector g � y0 on the
diagonal, F(x) 2 Rd a nonlinear forcing term, z 2 Rd a
scaled velocity of motion, and x 2 R the phase defined by
the following equation

⌧ ẋ = �↵xx. (5)

The phase x is used instead of time to avoid explicit time
dependency. It is fully defined by setting its initial value
to x(0) = 1. Eq. system (3) – (5) constitutes a dynamic
movement primitive (DMP). If the parameters ⌧,↵x,↵z,�z 2
R are defined appropriately, e. g. ⌧,↵x > 0 and ↵z = 4�z >

0, then the linear part of equation system (3) – (4) becomes
critically damped and y, z monotonically converge to a
unique attractor point at y = g, z = 0. The forcing term
F(x) is usually defined as a linear combination of radial
basis functions

F(x) =

P
N

k=1 wk k(x)P
N

k=1 k(x)
x, (6)

 k(x) = exp
⇣
�hk (x� ck)

2
⌘
, (7)

where ck are the centers of Gaussians distributed along the
phase of the trajectory, and hk their widths. The role of
F is to adapt the dynamics of (3) – (4) to the desired
trajectory y(t), thus enabling the system to reproduce any
smooth movement from the initial position y0 to the final
configuration g. This can be accomplished by computing the
free parameters wk 2 Rd using regression techniques. See
[14] for more details.
↵z, �z, and ↵x are usually constants that do not change

between movements. Thus the neural network needs to learn
the other parameters of differential equation system (3) – (5)
to fully specify a DMP:

{wk}Nk=1, ⌧, g, y0. (8)

IV. COST FUNCTION AND ITS GRADIENT
A simple cost function for evaluating the output of the

encoder-decoder neural network would be to convert the
example movements Mj into DMPs and define the cost
function for the j-th DMP as follows

Ep(j) =
1

2

NX

k=1

kwk �wk,jk2 + (⌧ � ⌧j)
2+

kg � gjk2 + ky0 � y0,jk2
!
. (9)

Here {{wk}Nk=1, ⌧, g, y0} denotes the output of the neural
network and {{wk,j}Nk=1, ⌧j , gj , y0,j} the DMP parameters
calculated from the training data (1). While this cost function
provides for an easy implementation, it does not measure
directly the difference between the training movement and
the movement calculated by the neural network, but rather
the difference between the DMP parameters. If we want
to directly measure the difference between the trajectories
defined by DMP parameters calculated by a neural network,
here denoted as yDMP, and the training data yi,j from Eq.
(2), we need to define the following cost function

Et(j) =
1

2Tj

TjX

i=1

kyDMP(xi,j)� yi,jk2, (10)

where yDMP(xi,j) and xi,j = x(ti,j) are obtained by
integrating the DMP calculated by the neural network.

A. Calculating the gradient of the cost function

Backpropagation [15] is the method of choice for learning
deep neural networks. Backpropagation requires the gradi-
ents of the error function to be available. The gradients of
error function (9) are trivial to compute as this is simply
the Euclidean distance between the training DMP parameters
and the parameters computed by the neural network. But it is
more difficult to compute the gradients of (10) as yDMP(xi,j)
are calculated by integrating DMP equations (3) – (5).

The partial derivative of the cost function Et(j) with
respect to wl,k, k = 1, . . . , N, l = 1, . . . , d, are calculated
as follows

@Et(j)

@wl,k

=
1

Tj

TjX

i=1

�
y
DMP
l

(xi,j)� yl,i,j

� @yDMP
l

@wl,k

(xi,j),

(11)
where @yDMP

l
/@wl,k is the partial derivative of y

DMP
l

with
respect to wl,k. These derivatives can be obtained by cal-
culating the derivatives of Eq. (3) and (4) with respect to
wl,k

⌧
@żl

@wl,k

= ↵z(��z
@yl

@wl,k

� @zl

@wl,k

) +

(gl � yl,0)
 k(x)P

N

n=1 n(x)
x, (12)

⌧
@ẏl

@wl,k

=
@zl

@wl,k

. (13)

and integrating the resulting differential equation system in
@yl/@wl,k and @zl/@wl,k. This can be done because the
following holds for continuously differentiable trajectories

d

dt

@

@wl,k

zl =
@

@wl,k

d

dt
zl,

d

dt

@

@wl,k

yl =
@

@wl,k

d

dt
yl.

Just like the DMP values y
DMP
l

(xi,j), which we obtain
through numerical integration, we can calculate the values
(@yl/@wl,k)(xi,j) by integrating the differential equation
system (12) – (13). For this purpose we need to know
the initial values of @yl/@wl,k and @zl/@wl,k at x(t1,j) =
x(0) = 1. Since the initial position yl(1) on the trajectory
does not depend on wl,k, we can set

@yl

@wl,k

(1) =
@zl

@wl,k

(1) = 0. (14)

The partial derivatives with respect to the parameters
gl, y0,l, l = 1, . . . , d, are obtained analogously. We start
by computing

@Et(j)

@gl
=

1

Tj

TjX

i=1

�
y
DMP
l

(xi,j)� yl,i,j

� @yDMP
l

@gl
(xi,j),

(15)
@Et(j)

@y0,l
=

1

Tj

TjX

i=1

�
y
DMP
l

(xi,j)� yl,i,j

� @yDMP
l

@y0,l
(xi,j).

(16)

Just like in the case of partial derivatives with respect to
wl,k, the partial derivatives with respect to gl and y0,l are
obtained by calculating the partial derivatives of Eq. (3) and
(4) with respect to gl and y0,l, which results in

⌧
@żl

@gl
= ↵z

✓
�z

✓
1� @yl

@gl

◆
� @zl

@gl

◆
+

P
N

n=1 wl,n n(x)P
N

n=1 n(x)
x,

(17)

⌧
@ẏl

@gl
=

@zl

@gl
. (18)

and

⌧
@żl

@y0,l
= ↵z

✓
��z

@yl

@y0,l
� @zl

@y0,l

◆
�
P

N

n=1 wl,n n(x)P
N

n=1 n(x)
x,

(19)

⌧
@ẏl

@y0,l
=

@zl

@y0,l
. (20)

The values of the above partial derivatives at phases xi,j

can be calculated by respectively integrating the equation
systems (17) – (18) and (19) – (20). The initial values are
set as follows

@yl

@gl
(1) =

@zl

@gl
(1) = 0, (21)

@yl

@y0,l
(1) = 1,

@zl

@y0,l
(1) = 0. (22)

In equation (22) we took into account that yl is initially set
to y0,l.

The calculation of partial derivatives with respect to ⌧

is somewhat more complicated because unlike previously
considered parameters, ⌧ affects all the degrees of freedom
and also phase x through Eq. (5). We start by computing

@Et(j)

@⌧
=

1

Tj

TjX

i=1

�
yDMP(xi,j)� yi,j

�T @yDMP

@⌧
(xi,j).

(23)
To compute the partial derivatives @yDMP

l
/@⌧ at phases xi,j ,

we first calculate the partial derivatives of Eq. (3) and (4)
with respect to ⌧

⌧
@żl

@⌧
= ↵z

✓
��z

@yl

@⌧
� @zl

@⌧

◆
� żl +

(gl � y0,l)
@

@⌧

 P
N

n=1 wl,n n(x)P
N

n=1 n(x)
x

!
, (24)

⌧
@ẏl

@⌧
=

@zl

@⌧
� ẏl. (25)

Since x depends on ⌧ , we also need to compute

@

@⌧

 P
N

n=1 wl,n n(x)P
N

n=1 n(x)
x

!
=

⇣P
N

n=1 wl,n(0
n
(x)x+ n(x))

⌘⇣P
N

n=1 n(x)
⌘

⇣P
N

n=1 n(x)
⌘2

@x

@⌧
�

⇣P
N

n=1
0
n
(x)
⌘⇣P

N

n=1 wl,n n(x)x
⌘

⇣P
N

n=1 n(x)
⌘2

@x

@⌧
.

Finally, differential equation (5) needs to be differentiated
with respect to ⌧ to compute the partial derivative @x/@⌧ ,
which appears in the equation above. We obtain

⌧
@ẋ

@⌧
= �↵x

@x

@⌧
� ẋ. (26)

Thus, to calculate @yDMP
/@⌧ , we need to integrate 2d+ 1

equations comprising differential equation system (24) – (26)
in @yl/@⌧ , @zl/@⌧ , and @x/@⌧ , with initial values set to

@yl

@⌧
(1) =

@zl

@⌧
(1) =

@x

@⌧
(1) = 0, l = 1, . . . , d. (27)

This above initialization is because the initial positions on
the trajectory and the initial value of the phase do not depend
on ⌧ .

Note that the differential equation system (24) – (26)
contains the values of ẏl, żl, x, and ẋ, thus the DMP
differential equation system (3) – (5) must be integrated si-
multaneously to have all the necessary parameters available.
If one wanted to avoid the rather complicated calculation
of partial derivative @Et(j)/@⌧ from Eq. (23), one could
estimate ⌧ in a separate deep neural network and consider
⌧ as constant when optimizing criterion function (10) to
calculate the rest of the DMP parameters, i. e. {wk}Nk=1, g,
and y0. In this case the neural network would have one less
neuron in the output layer.

V. EXPERIMENTAL RESULTS
In the first set of experiments we used a database that

consisted of 40⇥40 images of synthetically written digits and
the associated two-dimensional handwriting movements. For
a DMP representation of the movement trajectory we chose
25 radial-basis functions for every dimension. The weights
of these basis functions form together with the common time
constant (1 parameter) and the start and the goal values of
a planar movement (2 ⇥ 2 parameters), the set of 55 DMP
parameters computed as the output of our neural network.
The database was generated using a computer program that
produces handwritten digits from a combination of straight
lines and elliptic arcs. When generating these geometric
elements, we varied the parameters such as length and angle
of a straight line or length of minor and major axis, angle
between axes, and ellipse center of an elliptic arc. These
parameters varied according to a uniform distribution. From
these trajectories, grayscale images were generated with
the predefined width. The resulting images were processed
with a Gaussian filter and some moderate salt-and-pepper
noise was added to the foreground pixels. Finally, both the
generated trajectories and the resulting images were trans-
formed using affine transformations composed of translation,
rotation, scaling, and shearing. These parameters were again
taken from a uniform distribution.

In this synthetic experiment, for each digit from zero
to nine 2000 couples of images and the corresponding
trajectories were generated. Thus the training database con-
sisted of 20000 image - handwriting trajectory couples,
together constituting dataset (1). Some example images and
the associated trajectories that were used for evaluation are

TABLE I
DMP RECONSTRUCTION STATISTICS. THE RESULTS ARE IN PIXELS.

Mean Std. deviation

Synthetic data,
criterion function (9), 10 digits 0.40 0.84

Synthetic data,
criterion function (10), 10 digits 0.23 0.56

Synthetic data,
criterion function (9), digit 2 only 0.11 0.08

MNIST database,
criterion function (9), 2 digits 1.23 2.50

MNIST database,
criterion function (10), 2 digits 0.85 2.28

Fig. 2. Writing digit 2 with a robot. The movement is calculated from the
image shown in upper left corner. See also the video that accompanies this
paper.

shown in Fig. 4. The data from Fig. 4 were not part of
the training database. Typically about 25000 training updates
were performed before the network learned to approximate
the training data well and acquired good generalization
properties. It is clear that the trajectories generated by
the output DMPs (shown in red) are close to the original
trajectories used to generate the images (shown in blue),
although the DMPs were generated by the proposed encoder-
decoder neural network using grayscale images only as input.
Note that the same network synthesizes the handwriting
movements for all ten digits; it is not necessary to train a
separate network for classification. Evaluation database was
generated in the same way as the training database, with the
same size of 2000 examples for each out of ten digits. The
statistics of reconstruction quality is shown in Tab. I. It is
clear that by using criterion function (10), we can obtain
significantly better results than with criterion function (9),
although this second cost function is also able to reproduce
the digits, albeit with lower quality. As one could expect,
the third row in Tab. I show that the errors are smaller if the
network is specifically trained for one digit only.

We were also able to use the DMPs computed by the
proposed encoder-decoder network for writing all 10 digits
with a Kuka LightWeight Robot arm (LWR). For writing
with a pen, we used admittance control with a specified
contact force in direction of the pen tip while following a

Fig. 4. Example synthetic data showing the images of digits and the associated handwriting trajectories used to generate them. The original trajectories
are shown in blue, while the DMP trajectories calculated by a neural network are shown in red. Our neural network is able to reconstruct handwriting
trajectories well although these images and trajectories were not used for training.

Fig. 3. The results of reconstruction for digits from MNIST dataset. The
manually generated and transformed trajectories are shown in blue, while
the DMP trajectories calculated by a neural network are shown in red. These
data were used only for testing, not for training. Hence these results show
the generalization performance of the proposed encoder-decoder network.

trajectory specified by the output DMP. A few screenshots
from this experiments are shown in Fig. 2.

In the final experiment we tested our approach on a
standard MNIST dataset [16], which is widely used as a
benchmark for testing classification algorithms in handwrit-
ten digit recognition systems. Using a touch interface we
annotated 1170 digits 3 and 1170 digits 5 from this dataset
with the corresponding handwriting movements.

For training we generated altogether 11700 digits 3 and
11700 digits 5 by applying affine transformations to the origi-
nal images and the manually added handwriting movements.
The results are shown in Tab. I. While the errors are by
an order of magnitude larger than with synthetic data, the
proposed deep encoder-decoder network is still able to find
a good approximation of the handwriting motion. This can
be confirmed by analyzing Fig. 3. The main reason for larger
errors is that the MNIST database digits vary significantly
more than the synthetically generated digits, thus more data
is needed before the network can learn the digits well.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a new approach to convert greyscale images
into the associated dynamic movement primitives using deep
encoder-decoder neural networks. Our experimental results
show that with the proposed approach, handwriting move-
ments for digits can effectively be reconstructed from raw
images of digits.

There are quite a few possibilities to extend the proposed
approach. Our plan for the immediate future work is to
explore the application of convolutional neural networks for
the encoder part of the proposed architecture. This will
enable more effective processing of real images, which
should be beneficial especially for images with cluttered
background. In connection to this we will investigate how
pretrained convolutional neural networks can be exploited
for faster training of the proposed encoder-decoder networks.
Another possible extension is movement reproduction from
image sequences, which requires an effective dimensionality
reduction to be feasible.

While in this paper we focused on the reproduction
of handwriting movements, our work has many potential
applications beyond this task. For example, in the future

we plan to associate assistive robot actions with pointing
gestures observed by a robot. The image or image sequence
containing the pointing gesture will in this case be fed as
input to the encoder-decoder network and the output will be
the robot action associated with the gesture. This way an
effective human-robot interaction system could be created.

Acknowledgement: This work has received funding from
the EU’s Horizon 2020 RIA AUTOWARE (GA no. 723909);
the Slovenian Research Agency under GA no. J2-7360; JSPS
KAKENHI JP16H06565; NEDO; AMED SRPBS; ImPACT
Program of Council for Science, Technology, and Innovation
(Cabinet Office, Government of Japan); and the Commis-
sioned Research of NICT.

REFERENCES

[1] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
“Object-Action Complexes: Grounded abstractions of sensory-motor
processes,” Robotics and Autonomous Systems, vol. 59, no. 10, pp.
740–757, 2011.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
2016.

[4] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for
camera relocalization,” in IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden, 2016, pp. 4762–4769.

[5] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable Folding Task by Humanoid Robot Worker Using Deep
Learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
397–403, 2016.

[6] N. Chen, J. Bayer, S. Urban, and P. van der Smagt, “Efficient move-
ment representation by embedding Dynamic Movement Primitives in
deep autoencoders,” in IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), Seoul, Korea, 2015, pp. 434–440.

[7] N. Chen, M. Karl, and P. van der Smagt, “Dynamic movement
primitives in latent space of time-dependent variational autoencoders,”
in IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), Cancun, Mexico, 2016, pp. 629–636.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–
507, 2006.

[9] T. Matsuo, H. Fukuhara, and N. Shimada, “Transform Invariant Auto-
encoder,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 2359–2364.

[10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for scene segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2016, doi: 10.1109/TPAMI.2016.2644615.

[11] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang, “Object Contour
Detection with a Fully Convolutional Encoder-Decoder Network,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, Nevada, 2016, pp. 193–202.

[12] A. Pervez, Y. Mao, and D. Lee, “Learning Deep Movement Primitives
using Convolutional Neural Networks,” in IEEE-RAS International
Conference on Humanoid Robots (Humanoids), Birmingham, UK,
2017, pp. 191–197.

[13] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computations, vol. 25, no. 2, pp. 328–373, 2013.

[14] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-
eralization of Discrete and Periodic Dynamic Movement Primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, no.
6088, pp. 533–536, 1986.

[16] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database
of handwritten digits,” http://yann.lecun.com/exdb/mnist/, accessed:
2017-09-15.

