
Learning to Write Anywhere with Spatial Transformer
Image-to-Motion Encoder-Decoder Networks

Barry Ridge1,2, Rok Pahič2, Aleš Ude2, and Jun Morimoto1

Abstract— Learning to recognize and reproduce handwritten
characters is already a challenging task both for humans and
robots alike, but learning to do the same thing for characters
that can be transformed arbitrarily in space, as humans do
when writing on a blackboard for instance, significantly ups
the ante from a robot vision and control perspective. In
previous work we proposed various different forms of encoder-
decoder networks that were capable of mapping raw images
of digits to dynamic movement primitives (DMPs) such that
a robot could learn to translate the digit images into motion
trajectories in order to reproduce them in written form.
However, even with the addition of convolutional layers in
the image encoder, the extent to which these networks are
spatially invariant or equivariant is rather limited. In this
paper, we propose a new architecture that incorporates both
an image-to-motion encoder-decoder and a spatial transformer
in a fully differentiable overall network that learns to rectify
affine transformed digits in input images into canonical forms,
before converting them into DMPs with accompanying motion
trajectories that are finally transformed back to match up with
the original digit drawings such that a robot can write them
in their original forms. We present experiments with various
challenging datasets that demonstrate the superiority of the new
architecture compared to our previous work and demonstrate
its use with a humanoid robot in a real writing task.

I. INTRODUCTION

In order to enable a robot to learn how to read and
write effectively, or indeed to learn how to tackle many
other tasks that involve tightly coupling perception and
action skills, an effective strategy is to break the overall
problem down into individually soluble components before
attempting to merge the individual solutions into a fully-
functioning holistic approach. At the heart of the writing
problem, for example, is the necessity to be able to translate
between visual representations of characters perceived from
raw images and the action representations needed to control
the motion trajectories required for drawing them, and while
this core problem can be effectively tackled individually,
other important problems lurk both within it and at its
periphery. In previous work [1] we directly tackled this
core problem by proposing an image-to-motion encoder-
decoder neural network architecture (IMEDNet) that was
capable of converting raw images of digits into the dynamic
movement primitives (DMPs) developed by Ijspeert et al. [2]
for writing trajectory motion representation. However, given

1ATR Computational Neuroscience Laboratories, Kyoto, Japan
barry.ridge@atr.jp, xmorimo@atr.jp

2 Dept. of Automatics, Biocybernetics, and Robotics, Jožef
Stefan Institute, Ljubljana, Slovenia rok.pahic@ijs.si,
ales.ude@ijs.si

Published in: IEEE International Conference on Robotics and Automation
(ICRA), Montreal, Canada, pp. 2111–2117, 2019.

Fig. 1: Writing digits with the Talos humanoid robot us-
ing a spatial transformer image-to-motion encoder-decoder
network (STIMEDNet) prediction. The movements are gen-
erated using DMP trajectories predicted by the network from
the images shown to the robot and the robot can write the
digits in matching poses.

the fully-connected nature of that original network, the visual
perception component was a relatively weak point, thus in
the work presented here we improved upon this by including
pre-trained convolutional neural network (CNN) layers in
the image encoder (CIMEDNet) making the network more
robust to image variation and noise.

While the original IMEDNet network was useful for
converting images of digits into motion trajectories, certain
difficulties became apparent when considering real-world
scenarios in which, for example, a robot is shown a digit
on a piece of paper held in front of its camera or written
in free-form on a board, and must generate a corresponding
motion. The networks are trained on images of a certain size
with the objects generally presented in canonical poses with
relatively low degrees of variation with respect to position,
scale and orientation. When applying a trained network to
localize such objects within a larger image, the standard
technique is to employ an appropriately sized sliding window
where the network is applied at multiple locations at regular
intervals. While this is effective at dealing with translations,
even when CNN layers are employed, as was the case with
CIMEDNet, there are limitations when it comes dealing with
rotation and scaling. The max-pooling layers in a CNN can
provide a certain amount of invariance when it comes to
such transformations, but due to their relatively small spatial
support, even with very deep networks this tends not to
extend to the types of large affine transformations under
consideration in our chosen problem domain [3], [4].

There have been ongoing efforts to develop different forms
of deep neural networks that break away from the restric-
tions imposed by the max-pooling layers of CNNs, capsule
networks [5] being a particularly striking example, where
equivariance, that is proportional transformation variation



Localization Net Grid
Generator

Sampler

Spatial Transformer

Image-to-Motion
Encoder-Decoder Motion Transformer

Canonical
DMP

Parameters

Input Image
Canonical

Image

Rectified
Trajectory

Canonical
Trajectory

Fig. 2: The proposed STIMEDNet architecture. Input images are fed to a spatial transformer network (STN) which rectifies
attended objects into canonical form before being passed to a pre-trained convolutional image-to-motion encoder-decoder
network (CIMEDNet) producing DMP parameters k that are integrated via D (Euler’s method) into motion trajectories
yDMP and transformed via Tθ to final output form yDMP

θ by a motion transformer (MTN). The same θ transform parameters
learned by the STN to transform the images at the bottom of the network are passed to the MTN via skip connection where
they are reused to transform the trajectories at the top of the network. The solid arrows mark differentiable paths through
the network, the dashed arrow marks auxiliary output.

between inputs and outputs, is directly considered. Their de-
sign, however, is fundamentally different to that of CNNs and
their development is comparatively still in its infancy. The
recently introduced spatial transformer networks (STNs), on
the other hand, provide a means of approaching the problem
of invariance and equivariance to affine transformations, but
can be relatively easily incorporated into existing or novel
CNN-based architectures.

Thus, building on our own recent work and on these
other recent advances, in this paper, we propose a novel
architecture that intertwines three main components in order
to effectively approach the proposed robot writing problem.
The first of these components is an STN that reads input
images containing the affine-distorted digits and learns how
to transform them into images in which the digits are in
canonical poses. At the core of the architecture is the sec-
ond component, the IMEDNet network, which converts the
canonical digit images into DMP parameters. The third and
final component is a motion transformer that first integrates
the DMPs into motion trajectories and then uses the same
transformation parameters passed forward from the STN to
transform the predicted canonical trajectories to correspond
to the canonical poses of the digits as originally presented in
the input images. The entire network is fully differentiable
and can be trained end-to-end.

1) Related Work: With regard to handwriting synthesis
specifically, Graves et al. [6] introduced a deep multi-
layered recurrent neural network (RNN) that utilized long
short-term memory (LSTM) units [7] in order to generate
synthetic handwriting in point-by-point sequences. The Deep
Recurrent Attentive Writer (DRAW) network [?] combined
a spatial attention mechanism mimicking foveation with a
sequential variational auto-encoding framework that allowed
for the iterative construction of images from both the MNIST
and SVNH (Google StreetView House Numbers) datasets.
Ha et al.[9], proposed a sequence-to-sequence variational
autoencoder where the encoder is an RNN that converts input
images containing hand-drawn sketchs to vector sequences
such that the network can generate its own sketches. This

paper was also behind the contribution of Google’s Quick-
Draw dataset, a large-scale database of hand-drawn sketches
that was used to train the network.

Prior to the adoption of deep learning methods for such
tasks, an effort was made by Ali [10] at modeling individual
brush strokes of calligraphic characters using Gaussian Mix-
ture Models, combining the brush strokes using Gaussian
Mixture Regression and reproducing brush stroke trajecto-
ries using DMPs. The reproduced stroke trajectories were
iteratively refined using reinforcement learning for learning
examples in the database, but each reproduction started from
scratch with no generalization between different examples
or to new unseen cases. Usually when CNNs are used for
supervised learning of perception-action couplings, they are
used in combination with another neural network in two
separately trainable parts. In [11], Yang et al. first used a
deep convolutional autoencoder for finding camera image
features and then in combination with recorded robot angles,
formed sequences for the learning task dynamics with a
time delay neural network. Pervez et al. [12] used a pre-
trained CNN for finding task parameters from input images,
while using a another fully-connected neural network to learn
to generate forcing terms from the clock signal and task
parameters, before combining both networks in an end-to-
end training scheme. Both of these two examples produce the
next step from the image of the current step while working
in online loop, whereas our method, by contrast, uses just
single images for generating entire trajectories.

II. SPATIAL TRANSFORMER IMAGE-TO-MOTION
ENCODER-DECODER NETWORKS

The newly proposed spatial transformer image-to-motion
encoder-decoder network (STIMEDNet) architecture is illus-
trated in Fig. 2. In order to describe the proposed architecture
in more detail, we begin by discussing the nature of the data
that it must process, the structure of which is the same as in
[1]. The input and output data pairs take the following form:

D = {Cj ,Mj}Mj=1 , (1)



where M is the number of input and output training pairs,
i. e. input images Cj ∈ RH×W of width W and height
H , and output trajectories Mj associated with each image,
where

Mj = {yi,j , ti,j}Tj

i=1 . (2)

Here yi,j ∈ Rd are the vectors describing the movement’s
degrees of freedom, e. g. Cartesian positions or joint angles,
ti,j ∈ R the measurement times for the j-th movement, and
d is the number of degrees of freedom. However, it should
be noted that in this paper, we convert the movements Mj

to DMPs and construct all of the datasets used to train the
network models as follows:

D′ = {Cj ,kj}Mj=1 , (3)

where kj are the DMP parameters calculated for each
movement Mj and are represented as follows:

kj =
{
{wk}Nk=1, τ, g, y0

}
. (4)

The construction of DMPs and the nature of the parameters
{wk}Nk=1, τ , g and y0 are briefly explained further below in
the following section.

A. Motion Representation with DMPs

Letting any given motion trajectory be denoted as y(t) ∈
Rd, a DMP specifying this motion is defined by a system of
differential equations

τ ż = αz(βz(g − y)− z) + diag(g − y0)F(x), (5)
τ ẏ = z. (6)

This equation system contains several parameters including
the initial position y0 ∈ Rd on the trajectory and the final
position g ∈ Rd. The diagonal matrix diag(g− y0) ∈ Rd×d
contains the coefficients of vector g−y0 on its diagonal. The
auxilliary parameter z ∈ Rd is a scaled velocity of motion,
while x ∈ R is the phase defined by the following equation

τ ẋ = −αxx. (7)

The phase is used instead of time to avoid explicit time
dependency. It is fully defined by setting its initial value
to x(0) = 1. Eq. (5) also contains the nonlinear forcing term
F(x), which is usually defined as a linear combination of
RBFs (radial basis functions)

F(x) =

∑N
k=1 wkΨk(x)∑N
k=1 Ψk(x)

x, (8)

Ψk(x) = exp
(
−hk (x− ck)

2
)
. (9)

Here ck are the centers of RBFs distributed along the phase
of the trajectory, and hk their widths. The role of F is to
adapt the dynamics of the linear part of Eq. (5) – (6) to
any desired trajectory y. This way the dynamic system can
reproduce any smooth motion between the starting and final
robot configuration y0 and g, respectively.

The linear part of equation system (5) – (6) is critically
damped if the fixed parameters τ, αx, αz, βz ∈ R fullfil

Fig. 3: The image-to-motion encoder-decoder network
(CIMEDNet) at the core of the overall architecture shown
in Fig. 2 with an encoder consisting of two convolutional
layers followed by two fully-connected layers, and a decoder
consisting of three fully-connected layers.

τ, αx > 0 and αz = 4βz > 0. In this case y, z monotonically
converge to a unique attractor point at y = g, z = 0.

Standard regression techniques are usually applied to com-
pute the free parameters wk ∈ Rd [13]. Constants αz, βz,
and αx are set to fixed values for all movements. All other
parameters of differential equation system (5) – (7), i. e. wk,
τ , g and y0 need to be computed by the neural network.

B. Network Architecture

1) Spatial Transformer: The spatial transformer at the
base of the architecture in Fig. 2 is an implementation of
the spatial transformer

that takes as input an image containing an affine-
transformed digit, or potentially some other type of character
or object, passes it through a localization network in order
to learn the transformation parameters θ, and transforms it
into an output image with the attended digit in canonical
form. This is achieved by using a sampling grid G of
normalized coordinates that is placed over the output image
and is projected back to the input image via the transform
Tθ(G) before a bilinear sampler is used to sample points
from the grid in the input image in order to generate the
pixels in the output image. If we can assume that the motion
trajectories Mj in our training data from Equation (1) can
be matched to equivariant transformations of the DMP-
integrated trajectories predicted from the canonical images,
which is a reasonable assumption in the problem domain
under consideration in this paper, then we can reuse the θ
parameters to transform the trajectories from their canonical
form to their output form later in the network in the motion
transformer. Thus we pass these θ parameters directly to the
motion transformer via skip connection, taking advantage of
the fact that gradients can be propagated from the top of the
network to the bottom via this pathway in order to potentially
learn the requisite transformations faster.

2) Image-to-Motion Encoder-Decoder: The image-to-
motion encoder-decoder network that lies at the heart of the
architecture presented in Fig. 2 is a convolutional version of
the fully-connected IMEDNet from [1]. It uses both convo-
lutional and fully-connected layers in the image encoder and
fully-connected layers in the DMP decoder. It is illustrated
in more detail in Fig. 3. The convolutional layers are pre-
trained as part of a basic CNN classifier that was trained on



the original MNIST dataset [15] The input is a 40× 40× 1
grayscale pixel image, followed the encoder consisting of a
convolutional layer with 5 × 5 kernel size and 10 feature
maps, a convolutional layer with 5 × 5 kernel size and 20
feature maps, and two fully-connected layers with sizes of
600 neurons and 200 neurons respectively. Following these
fully-connected layers, at the bottleneck of the network that
forms the latent space representation, a decoder is formed
with more fully-connected layers that gradually expand the
number of units in each layer until the final output layer,
which has a size set to 54 units in order to match the
DMP parameters specified in Equation (4). The layers of the
decoder are illustrated on the right side of 3 starting with
the bottleneck of size 20, followed by a layer of size 35 and
finishing with the output layer. This is the same decoder
structure as used [1] and we retain it here as-is, having
found it to be effective throughout our experiments for this
particular use case. It should be noted, however, that there
are no particular restrictions on the nature of the network that
is used here, and it is easy to imagine a more advanced pre-
trained CNN being used for the image encoder, for example,
if the application demanded it.

C. Cost Function and Gradients

The cost function used to evaluate the output of the
network and for applying backpropagation [16] in order to
learn the network weights, is a slightly modified form of
Equation (10) from [1], which directly measures the differ-
ence between the final transformed trajectories yDMP

θ output
by the motion transformer module and the yi,j training data
from Eq. (2), and is defined as follows:

Et(j) =
1

2Tj

Tj∑
i=1

‖yDMP
θ (xi,j)− yi,j‖2. (10)

This differs from the cost function of Equation (9) from [1]
which measured the distance between the DMP parameters k
predicted by the encoder-decoder network and the kj DMP
parameters from the training data in Equation (3). We must
use the former cost function here because we require that
the trajectories be produced via DMP integration within the
network such that they can be transformed at the top of
the network, which is trained end-to-end. The calculation
of the gradients of the cost function in Equation (10) is
not as straightforward as for the cost function that uses the
DMP parameter distances, but since the θ-transform of the
trajectory does not cause the calculation to differ from that
of Equation (10) in [1], we refer the interested reader to that
paper for further details.

III. EXPERIMENTS
To evaluate the proposed model, we performed experi-

ments involving synthetically generated datasets and a proof-
of-concept implementation using the full-scale Talos hu-
manoid robot. In our experiments on the synthetic datasets,
we trained the IMEDNet network, the CIMEDNet network,
and the proposed newly proposed STIMEDNet architecture
on various digit image and motion trajectory datasets. The

IMEDNet architecture was the same as described in [1] with
fully-connected hidden layer sizes of 1500, 1300, 1000, 600,
200, 20, and 35 neurons, respectively. The CIMEDNet archi-
tectures was as described in Section II-B and as illustrated
for in in Fig. 3. We used PyTorch [17] in order to implement
all networks1 and trained our models on NIVIDIA GTX
1080 GPUs. When pre-training the MNIST CNN classifier
described in Section II-B.2, we used a stochastic gradient
descent optimizer, a negative log-likelihood loss, a batch size
of 64, a learning rate of 0.01 with momentum 0.5, and trained
for 10 epochs. This achieved a 98% accuracy which we
deemed sufficient for our purposes in extracting the trained
convolutional layers for use in the encoder-decoder networks.

When training the IMEDNet, CIMEDNet and STIMED-
Net networks, we used the Adam optimizer [18] with a learn-
ing rate of 0.0005, with the epsilon parameter for numerical
stability set to 0.001 and with weight decay, which provides
L2 regularization equivalence, to 0.000025. In order to avoid
learning plateaus, the optimizer parameters were periodically
reset to initial values every 500 epochs. A mean squared
error loss was used to evaluate the cost function in Equation
(10) and the batch size was set to 140 for weight updates.
As a stopping criterion, if the best validation loss was
unchanged after 60 epochs, training was halted. The above
training procedure was used for all three of the IMEDNet,
CIMEDNet and STIMEDNet architectures. The pre-trained
MNIST CNN model was used to initialize the weights of the
convolutional layers in the CIMEDNet model, as described
previously, and a pre-trained CIMEDNet model was used
to initialize the weights of the CIMEDNet model contained
within the STIMEDNet architecture. All three models were
fine-tuned with end-to-end training via backpropagation on
the training sets from the datasets described below. The
results for these different training regimes are cataloged in
Table I.

A. Datasets

1) MNIST: The original MNIST dataset [19] consists of
a training set of 60,000 samples and a test set of 10,000
samples of handwritten digit images of size 28×28 grayscale
pixels. As noted above, we used this dataset to pretrain the
convolutional layers as part of a CNN classifier.

2) Synthetic MNIST: In order to approach the training
of the models described in this paper, given the lack of
accompanying motion trajectories, the MNIST dataset by
itself does not provide the necessary image motion pairs
for the data descriptions defined in Equations (1) or (3).
Therefore, we employed the same scheme described in [1]
in order to generate 40 × 40 as well as 60 × 60 images of
synthetically written digits and associated two-dimensional
artificial writing trajectory movements.2 Briefly, the syn-
thetic trajectory data was generated using a combination of
straight lines and elliptic arcs. These geometric elements
were used to generate grayscale digit images and their

1Code: https://github.com/abr-ijs/imednet
2Code: https://github.com/abr-ijs/digit_generator

https://github.com/abr-ijs/imednet
https://github.com/abr-ijs/digit_generator


TABLE I: DMP reconstruction statistics. The results are in pixels. The best result for each dataset is highlighted in boldface.

s-MNIST s-MNIST-R s-MNIST-RTS s-MNIST-RTS-VW

IMEDNet 0.1353± 0.0491 0.3606± 0.4746 0.7745± 0.0.4702 0.8350± 0.5117

CIMEDNet 0.2285± 0.0952 0.6361± 0.5329 1.1785± 0.4897 1.2985± 0.6104

STIMEDNet 0.1750± 0.0726 0.3054± 0.4911 0.2085± 0.1172 0.2193± 0.1851

Fig. 4: Example results for three different models (IMEDNet in the top row, CIMEDNet in the second row, STIMEDNet in
the third row and the canonical image and trajectory predicted by STIMEDNet in the bottom row) on the s-MNIST-RTS-VW
dataset. The original trajectories are shown in blue, while the DMP trajectories calculated by the models are shown in red
and the predicted canonical trajectory is shown in purple. None of the presented samples were used in training.

paramaters were varied according to a uniform distribution.
The resulting images were processed with a Gaussian filter
and some moderate salt-and-pepper noise was added to the
foreground pixels. Finally, both the generated trajectories and
the resulting images were transformed using affine trans-
formations composed of translation, rotation, scaling, and
shearing. These parameters were again taken from a uniform
distribution. For the DMP representation of the trajectories,
25 radial-basis functions were selected for every dimension.
The weights of these basis functions form together with the
common time constant (1 parameter) and the start and the
goal values of a planar movement (2 × 2 parameters), the
full set of 55 DMP parameters that represent the motion.

Using the above described procedure several datasets were
generated both with and without similar affine distortions to
those of some of the distorted MNIST datasets described in
the spatial transformer networks paper [?] as follows:

• s-MNIST: 2000 pairs of images and trajectories without
any added noise were generated for each digit, for a total
of 20000 samples that were split in a 70%/15%/15%
ratio between training/validation/test data,

• s-MNIST-R: 2000 pairs of images and trajectories were
generated for each digit as with s-MNIST, but the digits
and trajectories were randomly rotated with uniform
angle sampling between −90◦ and +90◦ as in [?],

• s-MNIST-RTS: 2000 pairs of images and trajectories

were generated for each digit as with s-MNIST, but
the digits and trajectories were randomly rotated with
uniform angle sampling between −45◦ and +45◦ as in
[?], scaled by a factor between 0.7 and 1.2 as in [?]
and translated to a random location in a 60× 60 image
with a black background,

• s-MNIST-RTS-VW: 2000 pairs of images and trajec-
tories were generated for each digit as with s-MNIST-
RTS, but the line widths of the digits in the images were
randomly varied within a standard deviation of 0.5 of
their original thicknesses.

It should be noted that the pre-trained CIMEDNet model in
the STIMEDNet architecture was trained on the s-MNIST
dataset described above. The main quantitative results are
presented in Table I while qualitative results for selected
samples are presented in Fig. 4. The quantitative evaluation
presented in Table I uses dynamic time warping in order
to measure the mean pointwise pixel distance between the
trajectories generated by the DMPs predicted by the networks
from the digit images and the actual digit trajectories. As
can be seen from the results, STIMEDNet outperforms both
the original fully-connected IMEDNet and the convolutional
CIMEDNet in most cases, significantly so when the digits
have undergone full affine transformations and it performs
comparably to IMEDNet in the remaining case. The qualita-
tive results from Fig. 4 also demonstrate how the STN finds



Fig. 5: Closeup of the Talos robot drawing a digit with its hand alongside results from the robot experiment. Digits handwritten
by a human are shown in black ink, digits written by the robot are shown in red ink.

canonical poses of the digits such that the image-to-motion
encoder-decoder can predict canonical trajectories that can be
accurately transformed to the expected poses. These are not
the kinds of canonical poses that might have been expected
given the categorical nature of the digits in the dataset, or
compared to what a human might have produced, but we
reason that because this is a regression problem, as opposed
to the classification problem considered by the original STN
paper [?] there is no inherent bias in the objective function to
produce canonical digit poses that are well-matched to their
original categorical forms prior to distortion.

B. Robot Experiment

In our robotic experiment, we used the Talos humanoid
robot and a trained STIMEDNet model to recognize hand-
written digits written at arbitrary locations on a piece of
paper placed on board in front of the robot and then produce
the DMPs and trajectories needed for the robot to draw the
digits with its hand at matching locations on another piece
of paper of the same size. In the first step, the board that
the piece of paper with the digit written on it is segmented
from the scene in the robot’s camera image using standard
computer vision techniques as follows. The whole image
from robot camera scene view is blurred and transformed
into HSV color space, where we use a Canny edge detector
in the value dimension. In the extracted edges, we search
for closed contours with the shape of a parallelogram and
appropriate sizes. The content of appropriate contour is then
affine transformed to a square shape and forms the image
of the piece of paper with the handwritten digit resized to
60x60 pixels required for input into the neural network. This
image is further processed to gray color, normalized and
color inverted. For lowering the influence of light and more
closely matching the intensity of the database images, the
image of handwritten digit is thresholded. In order to more
closely match the width of the pen used by the human writer
to the width of the digits in the training database, we dilated
the image with kernel size 2 and finally applied some light
Gaussian filter smoothing. The processed image is fed to
the neural network which returns a trajectory for writing
the digit from the image. The trajectory from the neural
network is from pixel dimensions transformed into robot
metric coordinate system and executed with a robot arm.
The trajectory from the neural network defines the planar
movement in two dimensions: the height and orientations
are held constant throughout all of the trajectory executions.
The robotic arm uses position control and the desired force

of the pen on the paper is ensured with a spring behind the
pen in the holder. The results are shown in Fig. 5. As can be
seen, this proof-of-concept shows that the robot can use the
STIMEDNet network to learn to both read and write digits
in arbitrary affine poses3.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a novel neural network architecture
for image-to-motion prediction that employs a spatial trans-
former module, a convolutional image-to-motion encoder-
decoder module and a motion transformer module in a
fully-differentiable overall model. We have demonstrated that
this architecture outperforms its predecessor on a variety of
different datasets and we have demonstrated its use with a
full-scale humanoid robot that is able to use the network to
learn to read and write digits in arbitrary poses as presented
to it. Regarding future work, we intend to expand the capa-
bilities of these models still further by incorporating layers
from more powerful pre-trained CNN models into the image
encoder of the CIMEDNet part of the network and training
the network on more challenging image sets. One challenge
here lies in either finding suitable image datasets that include
trajectory information in their target outputs or in finding
ways to convert the data in existing datasets into trajectories.
A possible approach would be to convert the borders of
object labels in existing semantic segmentation datasets into
draw trajectories, however, this would present the additional
difficulty of having to account for DMP representations for
trajectories that vary significantly in length given the large
variation in object size in such datasets. This might be
resolved by employing a recurrent neural network (RNN)
architecture and using fixed-sized DMPs in a temporal piece-
wise construction scheme. An interesting extension to the
original spatial transformer network that includes an RNN
capability was proposed in [20] and we envisage using a
similar technique within our architecture.

Acknowledgement: This work has received funding from
the EU’s Horizon 2020 RIA AUTOWARE (GA no. 723909);
the Slovenian Research Agency under GA no. J2-7360;
JSPS KAKENHI JP16H06565; NEDO; the Commissioned
Research of NICT; and the NICT Japan Trust (International
research cooperation program). The authors also wish to
thank Marcel Salmič for his significant contribution to the
PyTorch network implementations.

3Video: https://youtu.be/21YQd6_h8QE

https://youtu.be/21YQd6_h8QE


REFERENCES

[1] R. Pahič, A. Gams, A. Ude, and J. Morimoto, “Deep Encoder-
Decoder Networks for Mapping Raw Images to Dynamic Movement
Primitives,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia, May 2018, pp. 5863–5868.

[2] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[3] T. S. Cohen and M. Welling, “Transformation Properties of Learned
Visual Representations,” in International Conference on Learning
Representations (ICLR), San Diego, 2015.

[4] K. Lenc and A. Vedaldi, “Understanding Image Representations by
Measuring Their Equivariance and Equivalence,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 991–
999.

[5] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between
Capsules,” in Advances in Neural Information Processing Systems
(NIPS) 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 3856–3866.

[6] A. Graves, “Generating Sequences With Recurrent Neural Networks,”
arXiv:1308.0850 [cs], Aug. 2013.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra,
“DRAW: A Recurrent Neural Network For Image Generation,” in
International Conference on Machine Learning, Jun. 2015, pp. 1462–
1471.

[9] D. Ha and D. Eck, “A Neural Representation of Sketch Drawings,”
arXiv:1704.03477 [cs, stat], Apr. 2017.

[10] O. Ali, “Robotic Calligraphy: Learning From Character Images,” Ph.D.
dissertation, 2015.

[11] P. C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable Folding Task by Humanoid Robot Worker Using Deep
Learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
397–403, Apr. 2017.

[12] A. Pervez, Y. Mao, and D. Lee, “Learning deep movement primitives
using convolutional neural networks,” in 2017 IEEE-RAS 17th Inter-
national Conference on Humanoid Robotics (Humanoids), Nov. 2017,
pp. 191–197.

[13] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-
eralization of Discrete and Periodic Dynamic Movement Primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, Oct. 2010.

[14] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu,
“Spatial Transformer Networks,” in Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 2017–2025.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, no.
6088, pp. 533–536, Oct. 1986.

[17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” in NIPS 2017 Autodiff Workshop, Oct. 2017.

[18] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in 3rd International Conference for Learning Representations
(ICLR), San Diego, 2015.

[19] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[20] S. K. Sønderby, C. K. Sønderby, L. Maaløe, and O. Winther, “Re-
current Spatial Transformer Networks,” arXiv:1509.05329 [cs], Sep.
2015.


	INTRODUCTION
	Related Work

	SPATIAL TRANSFORMER IMAGE-TO-MOTION ENCODER-DECODER NETWORKS
	Motion Representation with DMPs
	Network Architecture
	Spatial Transformer
	Image-to-Motion Encoder-Decoder

	Cost Function and Gradients

	EXPERIMENTS
	Datasets
	MNIST
	Synthetic MNIST

	Robot Experiment

	CONCLUSIONS AND FUTURE WORK
	References

